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ABSTRACT 
 In this paper, we introduce and investigate a new class of sets called (1, 2)∗-g-closed and some new functions called (1, 2)∗-g-continuous, 

almost (1, 2)∗-g-continuous functions in bitopological spaces. Moreover we obtain the relationships among some existing closed sets like  (1, 

2)∗-g-closed, (1, 2)∗-semi-closed, (1, 2)∗--closed and (1, 2)∗--closed sets and their generalizations. Also we study some basic properties of (1, 

2)∗-g-closed sets. Further, we introduce (1, 2)∗-g-neighbourhood and discuss some properties of (1, 2)∗-g-neighbourhood. 
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1. INTRODUCTION 
The study of bitopological space was first initiated by Kelly [5] in 1963. By using the topological notions, namely, semi-open, -open 

and pre-open sets, many new bitopological sets are defined and studied by many topologists. In 2004, Ravi and Thivagar [11] studied 

the concept of stronger from of (1, 2)∗-quotient mapping in bitopological spaces and also introduced the concepts of (1, 2)∗-semi-open 

and (1, 2)∗--open sets.  In 2010,  Arockiarani [2] introduced (1, 2)∗-g-closed sets in bitopological spaces and studied some basic 

properties of (1, 2)∗-g-closed sets.  In 2010, K. Kayathri et al. [4] introduced and studied a new class of sets called regular (1, 2)∗-g-

closed sets and used it to obtain a new class of functions called (1, 2)∗-rg-continuous, (1, 2)∗-R-map, almost (1, 2)∗-continuous and 

almost (1, 2)∗-rg-closed functions in bitopological spaces and also obtained characterizations and preservation theorems for mildly (1, 

2)
*
-normal spaces. In 2022, H. Kumar [6] introduced the concept of (1, 2)∗--open sets and (1, 2)∗--neighbourhood and; studied their 

properties.  In 2022, H. Kumar [7] introduced the concept of (1, 2)∗-generalized -closed sets and studied some basic properties of (1, 

2)∗-g-closed sets. In 2022, H. Kumar [8] introduced the concept of regular (1, 2)∗-generalized -closed sets and (1, 2)∗-rg-

neighbourhood and; discussed their properties. Recently, H. Kumar [9] introduced and investigated some new functions called (1, 2)∗-

-continuous, (1, 2)∗-g-continuous, (1, 2)∗-rg-continuous, almost (1, 2)∗--continuous, almost (1, 2)∗-g-continuous, almost (1, 2)∗-

rg-continuous, (1, 2)∗--closed, (1, 2)∗-g-closed, (1, 2)∗-rg-closed, almost (1, 2)∗--closed, almost (1, 2)∗-g-closed and almost (1, 

2)∗-rg-closed functions in bitopological spaces and obtained characterizations and preservation theorems for mildly (1, 2)∗--normal 

spaces. 

 
2. PRELIMINARIES 

Throughout the paper (X, 1, 2), (Y, σ1, σ2) and (Z, 1, 2) (or simply X, Y and Z) denote bitopological spaces. 

 

Definition 2.1. Let S be a subset of X. Then S is said to be 1,2-open [11] if S = A  B where A  1 and B  2. The complement 

of a 1,2-open set is 1,2-closed.   

 

Definition 2.2 [11]. Let S be a subset of X. Then  

(i) the 1,2-closure of S, denoted by 1,2-cl(S), is defined as  {F : S   F and F is 1, 2-closed}; (ii) the 1,2-interior of S, denoted by 

1,2-int(S), is defined as  {F : F  S and F is 1,2-open}.  

 

Note 2.3 [11]. Notice that 1,2-open sets need not necessarily form a topology. 

 

Definition 2.4. A subset A of a bitopological space (X, 1, 2) is called  

(i) regular (1, 2 )
*-open  [11] if A =  1,2-int(1,2-cl((A)). 

(ii) (1, 2)
*
--open [2] if A is the finite union of (1, 2)

*-regular-open sets. 
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(iii) (1, 2)
*
-semi-open [ 11] if A = 1,2-cl(1,2-int(A)), 

(iv) (1 , 2)
*
--open [11] if A   1,2-int (1,2-cl(1,2-int (A))). 

(v) (1, 2)∗--open [6] if A   1,2 -int(1,2 -cl(1,2 -int)(A))   1,2 -cl(1,2 –int(A)).  

 

The complement of a regular (1, 2)
*-open (resp. (1, 2)

*
--open, (1, 2)∗-s-open, (1, 2)∗--open, (1, 2)∗--open) set is called regular (1 , 

2)
*-closed (resp. (1, 2)

*
--closed,  (1, 2)∗-s-closed, (1, 2)∗--closed, (1, 2)∗--closed). 

 
The (1, 2)∗-s-closure (resp. (1, 2)∗--closure, (1, 2)∗--closure) of a subset A of X is denoted by (1, 2)∗-s-cl(A) (resp. (1, 2)∗--cl(A), 
(1, 2)∗--cl(A)), defined as the intersection of all (1, 2)∗-s-closed (resp. (1, 2)∗--closed, (1, 2)∗--closed) sets containing A. 
 

The family of all regular (1, 2)
*-open (resp. regular (1, 2)

*-closed, (1, 2)∗-s-open, (1, 2)∗-s-closed, (1, 2)∗--open, (1, 2)∗--closed, (1, 

2)∗--open, (1, 2)∗--closed) sets in X is denoted by (1, 2)
*
-RO(X) (resp. (1, 2)

*
-RC(X),  (1, 2)∗-SO(X), (1, 2)∗-SC(X), (1, 2)∗--O(X), 

(1, 2)∗--C(X), (1, 2)∗--O(X), (1, 2)∗--C(X)).  
 

Remark 2.5. We have the following implications for the properties of subsets: 

 

regular (1, 2)
*-open                  (1, 2)

*
--open                 1, 2-open  

                                                                                                      

     (1, 2)
*
--open                      (1, 2)

*
-s-open              (1, 2)

*
--open 

 

Where none of the implications is reversible as can be seen from the following examples: 

 

Example 2.6. Let X = {a, b, c, d}, 1 = {, {a}, X} and 2 = {, {b}, {a, b, c}, X}. Then 

(i) The 1, 2-open sets are :  , {a}, {b}, {a, b}, {a, b, c}, X. 

(ii) The regular (1, 2)
*
-open sets are :  , {a}, {b}, X. 

(iii) The (1, 2)
*
--open sets are :  , {a}, {b}, {a, b},  X. 

(iv) The (1, 2)
*
-semi open sets are :  , {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X. 

(v) The (1, 2)
*
--open sets are :  , {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X 

(vi) The (1, 2)
*
--open sets are :   , {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X. 

 

Example 2.7. Let X = {a, b, c}, 1 = {, {b}, X} and 2 = {, {c}, X}. Then 

(i) The 1,2 -open sets are :  , {b}, {c}, {b, c}, X}. 

(ii) The regular (1, 2)
*
-open sets are :  , {b}, {c}, X. 

(iii) The (1, 2)
*
--open sets are :  , {b}, {c}, {b, c},  X. 

(iv) The (1, 2)
*
-semi-open sets are :  , X, {b}, {c}, {a, b}, {a, c}, {b, c}. 

(v) The (1, 2)
*
--open sets are :  , X, {b}, {c}, {b, c}. 

(vi) The (1, 2)
*
--open sets are :  , {b}, {c}, {a, b}, {a, c}, {b. c}, X. 

 

Example 2.8. Let X = {a, b, c, d} with 1 = {, X, {a}, {b}, {a, b}, {b, c, d}} and 2 = {, X, {c}, {a, c, d}}. Then 

(i) The 12 -open sets are :  , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d}, {b, c, d}. 

(ii) The regular (1, 2)
*
-open sets are :  , X, {a}, {b}, {c}, {a, b}, {a, c, d}, {b, c, d}. 

(iii) The (1, 2)
*
--open sets are :  , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d}, {b, c, d}. 

(iv)The (1, 2)
*
-semi open sets :  , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(v) The (1, 2)
*
--open sets are :  , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d}, {b, c, d}. 

(vi) The (1, 2)
*
--open sets are :  , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

 

3. (1, 2)
*
-RG-CLOSED SETS IN BITOPOLOGICAL SPACES 

Definition 3.1. A subset A of a bitopological space (X, 1, 2) is called 

(i) (1, 2)
*
-generalized closed (briefly (1, 2)

*
-g-closed) [12] if 1,2-cl(A)  U whenever A  U and U is 1,2-open in X. 

(ii) (1, 2)
*
--generalized closed (briefly (1, 2)

*
-g-closed) [13] if 1,2-cl(A)  U whenever A  U and U is (1, 2)

*
--open in X. 

(iii) regular (1, 2)
*
-generalized closed (briefly (1, 2)

*
-rg-closed) [4] if 1,2-cl(A)  U whenever A  U and U  (1, 2)

*
-RO(X). 

(iv) (1, 2)
*
--generalized closed (briefly (1, 2)

*
-g-closed) [11] if (1, 2)

*
--cl(A)  U whenever A  U and U is 1,2-open in X. 

(v) (1, 2)
*
--generalized -closed (briefly (1, 2)

*
-g-closed) [2] if (1, 2)

*
--cl(A)  U whenever A  U and U is (1, 2)

*
--open in 

X. 

http://www.eprajournals.com/
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(vi) regular (1, 2)
*
-generalized -closed (briefly (1, 2)

*
-rg-closed) [14] if (1, 2)

*
- -cl(A)  U whenever A  U and U  (1, 2)

*
-

RO(X). 

(vii) (1, 2)
*
-generalized semi-closed (briefly (1, 2)

*
-gs-closed) [13] if (1, 2)

*
--cl(A)  U whenever A  U and U is 1,2-open in X. 

(viii) (1, 2)
*
--generalized semi-closed (briefly (1, 2)

*
-gs-closed) [14] if (1, 2)

*
--cl(A)  U whenever A  U and U is (1, 2)

*
--

open in X. 

(ix) regular (1, 2)
*
-generalized semi-closed (briefly (1, 2)

*
-rgs-closed) [12] if (1, 2)

*
- -cl(A)  U whenever A  U and U  (1, 2)

*
-

RO(X). 

(x) (1, 2)
*
-generalized -closed (briefly (1, 2)

*
-g-closed) [7] if (1, 2)

*
--cl(A)  U whenever A  U and U is 1,2-open in X. 

(xi) (1, 2)
*
-generalized -closed (briefly (1, 2)

*
-g-closed) if (1, 2)

*
--cl(A)  U whenever A  U and U is (1, 2)

*
--open in X. 

(xii) regular (1, 2)
*
-generalized -closed (briefly (1, 2)

*
-rg-closed) [8] if (1, 2)

*
--cl(A)  U whenever A  U and U  (1, 2)

*
-

RO(X). 

 

The complement of a (1, 2)
*
-g-closed (resp. (1, 2)

*
-g-closed, (1, 2)

*
-rg-closed,  (1, 2)

*
-g-closed, (1, 2)

*
-g-closed, (1, 2)

*
-rg-

closed,  (1, 2)
*
-gs-closed,  (1, 2)

*
-gs-closed,  (1, 2)

*
-rgs-closed,  (1, 2)

*
-g-closed, (1, 2)

*
-g-closed,  (1, 2)

*
-rg-closed) set is 

called (1, 2)
*
-g-open (resp. (1, 2)

*
-g-open, (1, 2)

*
-rg-open, (1, 2)

*
-g-open, (1, 2)

*
-g-open, (1, 2)

*
-rg-open, (1, 2)

*
-gs-open, (1, 

2)
*
-gs-open, (1, 2)

*
-rgs-open (1, 2)

*
-g-open, (1, 2)

*
-g-open, (1, 2)

*
-rg-open). 

 
We denote the set of all (1, 2)

*
-rg-closed (resp. (1, 2)

*
-rg-open) sets in (X, 1, 2) by (1, 2)

*
-rg-C(X) (resp. rg-O(X)). 

 

Theorem 3.2. Every 1,2-closed set is gη-closed.  

Proof. Let A be any 1,2-closed set in (X, 1, 2) and A  U, where U is  (1, 2)
*
--open set. So (1, 2)

*
-cl(A) = A . Since every 1,2-

closed set is (1, 2)
*
-η-closed, so (1, 2)

*
-η-cl(A)  (1, 2)

*
-cl(A) = A. Therefore, (1, 2)

*
-η-cl(A)  A  U. Hence A is (1, 2)

*
-gη-closed 

set. 

 

Theorem 3.3. Every (1, 2)
*
-g-closed set is (1, 2)

*
-rgη-closed.  

Proof. Let A be any (1, 2)
*
-g-closed set in (X, 1, 2) such that (1, 2)

*
-cl(A)  U whenever A  U, where U is  (1, 2)

*
--open set, 

since every (1, 2)
*
--open set is 1,2-open. So (1, 2)

*
-η-cl(A)   (1, 2)

*
-cl(A)  U. Therefore (1, 2)

*
-η-cl(A)  U.  Hence A is (1, 2)

*
-

gη-closed set.  

 

Theorem 3.4. Every (1, 2)
*
-g-closed set is (1, 2)

*
-gη-closed.  

Proof. Let A be any (1, 2)
*
-g-closed set in (X, 1, 2) such that (1, 2)

*
-cl(A)  U whenever A  U, where U is  (1, 2)

*
--open set. 

So (1, 2)
*
-η-cl(A)  (1, 2)

*
-cl(A)  U. Therefore (1, 2)

*
-η-cl(A)  U.  Hence A is (1, 2)

*
-gη-closed set.   

 

Theorem 3.5. Every (1, 2)
*
-α-closed set is (1, 2)

*
-gη-closed.  

Proof. Let A be any (1, 2)
*
-α-closed set in (X, 1, 2) and A  U, where U is (1, 2)

*
--open set. Since every (1, 2)

*
-α-closed set is (1, 

2)
*
-η-closed, so (1, 2)

*
-η-cl(A)  (1, 2)

*
-α-cl(A) = A. Therefore (1, 2)

*
-η-cl(A)  A  U. Hence A is (1, 2)

*
-gη-closed set.  

 

Theorem 3.6. Every (1, 2)
*
-αg-closed set is (1, 2)

*
-gη-closed.  

Proof. Let A be any (1, 2)
*
-g-closed set in (X, 1, 2) such that (1, 2)

*
--cl(A)  U whenever A  U, where U is  (1, 2)

*
--open set, 

since every (1, 2 )
*--open set is 1,2-open. Given that A is (1, 2)

*
-g-closed set such that (1, 2)

*
--cl(A)  U. But we have (1, 2)

*
-η-

cl(A)  (1, 2)
*
--cl(A)  U. Therefore (1, 2)

*
-η-cl(A)  U. Hence A is (1, 2)

*
-gη-closed set.  

Theorem 3.7. Every (1, 2)
*
-gα-closed set is (1, 2)

*
-gη-closed.  

Proof. Let A be any (1, 2)
*
-g-closed set in (X, 1, 2) such that (1, 2)

*
--cl(A)  U whenever A  U, where U is  (1, 2)

*
--open 

set. Given that A is (1, 2)
*
-g-closed set such that (1, 2)

*
--cl(A)  U. But we have (1, 2)

*
-η-cl(A)  (1, 2)

*
--cl(A)  U. Therefore 

(1, 2)
*
-η-cl(A)  U. Hence A is (1, 2)

*
-gη-closed set.  

 

Theorem 3.8. Every (1, 2)
*
-semi-closed set is (1, 2)

*
-gη-closed.  

Proof. Let A be any (1, 2)
*
-semi-closed set in (X, 1, 2) and A  U, where U  is (1, 2)

*
--open set. Since every (1, 2)

*
-semi-closed 

set is (1, 2)
*
-η-closed, so (1, 2)

*
-η-cl(A)  (1, 2)

*
-s-cl(A) = A. Therefore (1, 2)

*
-η-cl(A)  A  U. Hence A is (1, 2)

*
-gη-closed set. 

 

Theorem 3.9. Every (1, 2)
*
-gs-closed set is (1, 2)

*
-gη-closed.  

Proof. Let A be any (1, 2)
*
-gs-closed set in (X, 1, 2) such that (1, 2)

*
-s-cl(A)  U whenever A  U, where U is  (1, 2)

*
--open set, 

since every (1 , 2 )
*--open set is 1,2-open. Given that A is (1, 2)

*
-gs-closed set such that (1, 2)

*
-s-cl(A)  U. But we have (1, 2)

*
-η-

cl(A)  (1, 2)
*
-s-cl(A)  U. Therefore (1, 2)

*
-η-cl(A)  U. Hence A is (1, 2)

*
-gη-closed set.  
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Theorem 3.10. Every (1, 2)
*
-gs-closed set is (1, 2)

*
-gη-closed.  

Proof. Let A be any (1, 2)
*
-gs-closed set in (X, 1, 2) such that (1, 2)

*
-s-cl(A)  U whenever A  U, where U is  (1, 2)

*
--open set. 

Given that A is (1, 2)
*
-gs-closed set such that (1, 2)

*
-s-cl(A)  U. But we have (1, 2)

*
-η-cl(A)  (1, 2)

*
-s-cl(A)  U. Therefore (1, 2)

*
-

η-cl(A)  U. Hence A is (1, 2)
*
-gη-closed set.  

  

Theorem 3.11. Every (1, 2)
*
-η-closed set is (1, 2)

*
-gη-closed.  

Proof. Let A be any (1, 2)
*
-η-closed set in (X, 1, 2) and A  U, where U is (1, 2)

*
--open set. Since A is (1, 2)

*
-η-closed. Therefore 

(1, 2)
*
-η-cl(A) = A  U. Hence A is (1, 2)

*
-gη-closed set.  

 

Theorem 3.12. Every (1, 2)
*
-gη-closed set is (1, 2)

*
-rgη-closed.  

Proof. Let A be any (1, 2)
*
-g-closed set in (X, 1, 2) such that (1, 2)

*
--cl(A)  U whenever A  U, where U is (1, 2)

*
--open set, 

since every (1 , 2 )
*--open set is 1,2-open. Given that A is (1, 2)

*
-g-closed set such that (1, 2)

*
--cl(A)  U. Therefore (1, 2)

*
-η-

cl(A)  U. Hence A is (1, 2)
*
-gη-closed set.  

 

Corollary 3.13. Every regular (1, 2)
*
-closed set is (1, 2)

*
-gη-closed. 

Proof. Since every regular (1, 2)
*
-closed set is 1,2-closed. So by Theorem 3.2, every  1,2-closed set is (1, 2)

*
-gη-closed. 

 

Corollary 3.14. Every (1, 2)
*
--closed set is (1, 2)

*
-gη-closed. 

Proof. Since every (1, 2)
*
--closed set is 1,2-closed. So by Theorem 3.2, every  1,2-closed set is (1, 2)

*
-gη-closed.   

 

Remark 3.15. We have the following implications for the properties of subsets: 

 

 

         (1, 2)
*
--closed    regular (1, 2)

*
-closed   

                                                     

             1,2-closed        (1, 2)
*
-g-closed       (1, 2)

*
-g-closed      (1, 2)

*
-rg-closed 

                                                                                                                           

        (1, 2)
*
--closed    (1, 2)

*
-g-closed     (1, 2)

*
-g-closed   (1, 2)

*
-rg-closed 

                                                                                                                           

        (1, 2)
*
-s-closed     (1, 2)

*
-gs-closed      (1, 2)

*
-gs-closed    (1, 2)

*
-rg-closed 

                                                                                                                           

       (1, 2)
*
--closed     (1, 2)

*
-gη-closed      (1, 2)

*
-gη-closed     (1, 2)

*
-rgη-closed 

 

Where none of the implications is reversible as can be seen from the following examples: 

 

Example 3.16. Let X = {a, b, c, d} with 1 = {, X, {a}, {b}, {a, b}, {b, c, d}} and 2 = {, X, {c}, {a, c, d}}. Then 

(i) regular (1, 2)
*
-closed :  , X, {a}, {b}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(ii) (1, 2)
*
--closed :  , X, {a}, {b}, {d},  {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(iii) 1,2-closed sets :  , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(iv) (1, 2)
*
-g-closed sets :  , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(v) (1, 2)
*
-g-closed sets :  , X, {a}, {b}, {c}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(vi) (1, 2)
*
-rg-closed sets :  , X, {a}, {b}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(vii) (1, 2)
*
--closed sets :  , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(viii) (1, 2)
*
-g-closed sets :  , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(ix) (1, 2)
*
-g-closed sets :  , X, {a}, {b}, {c}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(x) (1, 2)
*
-rg-closed sets :  , X, {a}, {b}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xi) (1, 2)
*
-s-closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xii) (1, 2)
*
-gs-closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xiii) (1, 2)
*
-gs-closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xiv) (1, 2)
*
-rgs-closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, 

d}. 

(xv) (1, 2)
*
--closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xvi) (1, 2)
*
-g-closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xvii) (1, 2)
*
-g-closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 
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(xviii) (1, 2)
*
-rg-closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, 

d}. 

 

Example 3.17. Let X = {a, b, c} with 1 = {, X, {b}} and 2 = {, X, {c}}. Then 

(i) regular (1, 2)
*
-closed :  , X, {a, b}, {a, c}. 

(ii) (1, 2)
*
--closed :  , X, {a}, {a, b}, {a, c}. 

(iii) 1,2-closed sets :  , X, {a}, {a, b}, {a, c}. 

(iv) (1, 2)
*
-g-closed sets :  , X, {a}, {a, b}, {a, c}. 

(v) (1, 2)
*
-g-closed sets :  , X, {a}, {a, b}, {a, c}. 

(vi) (1, 2)
*
-rg-closed sets :  , X, {a}, {a, b}, {a, c}, {b, c}. 

(vii) (1, 2)
*
--closed sets :  , X, {a}, {a, b}, {a, c}. 

(viii) (1, 2)
*
-g-closed sets :  , X, {a}, {a, b}, {a, c}. 

(ix) (1, 2)
*
-g-closed sets :  , X, {a}, {a, b}, {a, c}. 

(x) (1, 2)
*
-rg-closed sets :  , X, {a}, {a, b}, {a, c}, {b, c}. 

(xi) (1, 2)
*
-s-closed sets :  , X, {a}, {b}, {c}, {a, b}, {a, c}. 

(xii) (1, 2)
*
-gs-closed sets :  , X, {a}, {b}, {c}, {a, b}, {a, c}. 

(xiii) (1, 2)
*
-gs-closed sets :  , X, {a}, {b}, {c}, {a, b}, {a, c}. 

(xiv) (1, 2)
*
-rgs-closed sets :  , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}. 

(xv) (1, 2)
*
--closed sets :  , X, {a}, {b}, {c}, {a, b}, {a, c}. 

(xvi) (1, 2)
*
-g-closed sets :  , X, {a}, {b}, {c}, {a, b}, {a, c}. 

(xvii) (1, 2)
*
-g-closed sets :  , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}. 

(xviii) (1, 2)
*
-rg-closed sets :  , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}. 

 

Example 3.18. Let X = {a, b, c, d} with 1 = {, X, {a}} and 2 = {, X, {b}, {a, b, c}}. Then 

(i) regular (1, 2)
*
-closed :  , X, {a, c, d}, {b, c, d}. 

(ii) (1, 2)
*
--closed :  , X, {c, d}, {a, c, d}, {b, c, d}. 

(iii) 1,2-closed sets :  , X, {d}, {c, d}, {a, c, d}, {b, c, d}. 

(iv) (1, 2)
*
-g-closed sets :  , X, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(v) (1, 2)
*
-g-closed sets :  , X, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(vi) (1, 2)
*
-rg-closed sets :  , X, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(vii) (1, 2)
*
--closed sets :  , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}. 

(viii) (1, 2)
*
-g-closed sets :  , X, {c}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(ix) (1, 2)
*
-g-closed sets :  , X, {a}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(x) (1, 2)
*
-rg-closed sets :  , X, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xi) (1, 2)
*
-s-closed sets :  , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}. 

(xii) (1, 2)
*
-gs-closed sets :  , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xiii) (1, 2)
*
-gs-closed sets :  , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xiv) (1, 2)
*
-rgs-closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, 

d}. 

(xv) (1, 2)
*
--closed sets :  , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}. 

(xvi) (1, 2)
*
-g-closed sets :  , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xvii) (1, 2)
*
-g-closed sets :  , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xviii) (1, 2)
*
-rg-closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, 

d}. 

 

Example 3.19. Let X = {a, b, c, d} with 1 = {, X, {a}, {b}, {a, b}, {a, b, c}} and 2 = {, X, {a, b, d}}. Then 

(i) regular (1, 2)
*
-closed :  , X, {a, c, d}, {b, c, d}. 

(ii) (1, 2)
*
--closed :  , X, {c, d}, {a, c, d}, {b, c, d}. 

(iii) 1,2-closed sets :  , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}. 

(iv) (1, 2)
*
-g-closed sets :  , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}. 

(v) (1, 2)
*
-g-closed sets :  , X, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(vi) (1, 2)
*
-rg-closed sets :  , X, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(vii) (1, 2)
*
--closed sets :  , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}. 

(viii) (1, 2)
*
-g-closed sets :  , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}. 
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(ix) (1, 2)
*
-g-closed sets :  , X, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(x) (1, 2)
*
-rg-closed sets :  , X, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xi) (1, 2)
*
-s-closed sets :  , X, {a}, {b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}. 

(xii) (1, 2)
*
-gs-closed sets :  , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}. 

(xiii) (1, 2)
*
-gs-closed sets :  , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xiv) (1, 2)
*
-rgs-closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, 

d}. 

(xv) (1, 2)
*
--closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}. 

(xvi) (1, 2)
*
-g-closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}. 

(xvii) (1, 2)
*
-g-closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, 

d}. 

(xviii) (1, 2)
*
-rg-closed sets :  , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, 

d}. 

 

4. PROPERTIES OF (1, 2)∗--GENERALIZED -CLOSED SETS 

In this section, we study some basic properties of (1, 2)
*
-g-closed sets. Also, we introduce (1, 2)

*
-g-neighborhood (shortly (1, 

2)
*
-g-nbd in bitopological spaces by using the notion of (1, 2)

*
-g-open sets. We prove that every nbd of x in (X, 1, 2) is (1, 

2)
*
-g-nbhd of x but not conversely. 

 

Theorem 4.1. The union of two (1, 2)
*
-g-closed sets of (X, 1, 2) need not be an (1, 2)

*
-rg-closed set of (X, 1, 2). 

Proof. This can be seen from the following example. 

 

Example 4.2. Let X = {a, b, c, d} with 1 = {, X, {a}, {b}, {a, b}, {b, c, d}} and 2 = {, X, {c}, {a, c, d}}. Let A = {a} and B = 

{c} be (1, 2)
*
-g-closed sets but A  B = {a, c} is not an (1, 2)

*
-g-closed set. 

 

Theorem 4.3. The intersection of two (1, 2)
*
-g-closed-sets in (X, 1, 2) is also a (1, 2)

*
-rg-closed set in (X, 1, 2). 

Proof.  Easy to proof. 

 

Theorem 4.4. If a subset A is (1, 2)
*
-g-closed, then (1, 2)

*
--cl(A)  A does not contain any non-empty (1, 2)

*
--closed set. 

Proof. Suppose that A is (1, 2)
*
-g-closed. Let F be an (1, 2)∗--closed subset of (1, 2)

*
--cl(A)  A. Then F  [(1, 2)

*
--cl(A)  (X 

 A)] and so A  [X  F]. But A is (1, 2)
*
-g-closed. Therefore (1, 2)

*
--cl(A)  [X  F]. Consequently, F  [X  (1, 2)

*
--cl(A)]. 

We already have F  (1, 2)
*
--cl(A). Hence F  [(1, 2)

*
--cl(A)  X  (1, 2)

*
--cl(A)] = . Thus F = . Therefore (1, 2)

*
--cl(A)  A 

contains no non-empty (1, 2)∗--closed set. 

 

Example 4.5. The converse of Theorem 4.4 is not true. This can be seen from the following example. 

 

Example 4.6.  Let X = {a, b, c, d} with 1 = {, X, {a}, {b}, {a, b}, {a, b, c}} and 2 = {, X, {a, b, d}}. Let A = {a, b, c}. We have 

that (1, 2)
*
--cl(A)  A = X  {a, b, c} = {d} does not contain any non-empty (1, 2)∗--closed set. However, A is (1, 2)

*
-g-closed in 

X. 

  

Theorem 4.7. For an element x   (X, 1, 2), the set (X, 1, 2)  {x} is (1, 2)
*
- g-closed or (1, 2)∗--open. 

Proof. Suppose (X, 1, 2)  {x} is not (1, 2)∗--open set. Then (X, 1, 2) is the only (1, 2)∗- -open set containing (X, 1, 2)  

{x}. This implies (1, 2)
*
--cl((X, 1, 2)  {x})  (X, 1, 2). Hence (X, 1, 2)  {x} is (1, 2)

*
-g-closed set in (X, 1, 2). 

 

Theorem 4.8. Let A be a (1, 2)
*
-g-closed subset of X. If A   B   (1, 2)

*
--cl(A), then B is also (1, 2)

*
-g-closed in X. 

Proof. Let U   (1, 2)
*
-g-O(X) with B   U. Then A   U. Since A is (1, 2)

*
-g-closed, (1, 2)

*
--cl(A)  U. Also, since B  (1, 

2)
*
--cl(A), (1, 2)

*
--cl(B)   (1, 2)

*
--cl(A)    U. Hence B is also (1, 2)

*
-g-closed subset of X. 

 

Remark 4.9. The converse of the Theorem 4.8 need not be true in general. Consider the bitopological space (X, 1, 2) where X = 

{a, b, c, d, e} with topology 1 = {, {a, b}, {a, b, c, d}, X}, 2 = {, {c, d}, {a, b, c, d}, X}, Let A = {b} and B = {b, c}. Then A and 

B are (1, 2)
*
- g-closed sets in (X, 1, 2) such that A   B but B   (1, 2)

*
--cl(A) = {a, b}. 

 

Theorem 4.10. Let A be a (1, 2)
*
-g-closed in (X, 1, 2). Then A is (1, 2)

*
--closed if and only if (1, 2)

*
--cl(A)  A is an (1, 2)

*
-

-open.  
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Proof. Suppose A is a (1, 2)
*
--closed in (X, 1, 2). Then (1, 2)

*
--cl(A) = A and so (1, 2)

*
- cl(A)  A = , which is (1, 2)

*
--open 

in (X, 1, 2).  

 

Conversely, suppose (1, 2)
*
--cl(A)  A is an (1, 2)

*
--open set in (X, 1, 2). Since A is (1, 2)

*
- g-closed, by Theorem 4.4 (1, 2)

*
-

-cl(A)  A does not contain any nonempty (1, 2)
*
--open in (X, 1, 2). Then (1, 2)

*
--cl(A)  A = . Hence A is (1, 2)*--closed 

set in (X, 1, 2). 

 

Theorem 4.11. If A is (1, 2)
*
--open and (1, 2)

*
-g-closed, then A is (1, 2)

*
-g-closed set in (X, 1, 2). 

Proof. Let U be any (1, 2)
*
--open set in (X, 1, 2) such that A   U. Since A is (1, 2)

*
-open and (1, 2)

*
-g-closed, we have (1, 2)

*
-

-cl(A)    A. Then (1, 2)
*
--cl(A)    A    U. Hence A is (1, 2)

*
-g-closed set in (X, 1, 2). 

 

Theorem 4.12. If a subset A of bitopological space (X, 1, 2) is both (1, 2)
*
--open and (1, 2)

*
- g-closed, then it is (1, 2)

*
--

closed. 

Proof. Suppose a subset A of bitopological space (X, 1, 2) is both (1, 2)
*
--open and (1, 2)

*
- g-closed. Now A    A. Then (1, 

2)
*
--cl(A)    A. Hence A is (1, 2)

*
--closed. 

 

Corollary 4.13. Let A be (1, 2)
*
--open and (1, 2)

*
-g-closed subset in (X, 1, 2). Suppose that F is (1, 2)

*
--closed set in (X, 1, 

2). Then A   F is an (1, 2)
*
-g-closed set in (X, 1, 2).  

Proof. Let A be a (1, 2)
*
--open and (1, 2)

*
-g-closed subset in (X, 1, 2) and F be closed. By Theorem 4.12, A is (1, 2)

*
--closed. 

So A  F is a (1, 2)
*
--closed and hence A  F is (1, 2)

*
- g-closed set in (X, 1, 2). 

 

Theorem 4.14. If A is both open and (1, 2)
*
-g-closed set in (X, 1, 2), then it is (1, 2)

*
-g-closed set in (X, 1, 2). 

Proof. Let A be an open and (1, 2)
*
-g-closed set in (X, 1, 2). Let A   U and let U be a (1, 2)

*
--open set in (X, 1, 2). Now A    

A. By hypothesis (1, 2)
*
--cl(A)   A. That is (1, 2)

*
--cl(A)  U. Thus A is (1, 2)

*
-g-closed in (X, 1, 2). 

 

Theorem 4.15. A set A is (1, 2)
*
-g-open if and only if the following condition holds:  

                F  (1, 2)
*
--int(A) whenever F is (1, 2)∗--closed and F  A. 

Proof. Suppose the condition holds. Put [X  A] = B. Suppose that B  U where U  is (1, 2)∗--open. Now X  A  U implies F = [X 

 U]  A and F is (1, 2)∗--closed, which implies F  (1, 2)
*
--int(A). Also F  (1, 2)

*
--int(A) implies [X  (1, 2)

*
--int(A)]  [X  

F] = U. This implies [X  ((1, 2)
*
--int(X  B))]  U. Therefore [X  ((1, 2)

*
--int(X  B))]  U or equivalently (1, 2)

*
--cl(B)  U. 

Thus B is (1, 2)
*
-g-closed. Hence A is (1, 2)

*
-g-open. 

  

Conversely, suppose that A is (1, 2)∗-g-open, F  A and F is (1, 2)∗--closed. Then [X  F] is (1, 2)∗--open. Then (X  A)  (X  

F). Hence (1, 2)
*
--cl(X   A)  (X  F) because (X  A) is (1, 2)∗-g-closed. Therefore F  (X  (1, 2)

*
--cl(X  A)) = (1, 2)

*
--

int(A). 

   

Definition 4.16. Let (X, 1, 2) be a bitopological space and let x  (X, 1, 2). A subset N of (X, 1, 2) is said to be a (1, 2)
*
-g-

neighbourhood  (briefly (1, 2)
*
-g-nbd)  of x iff there exists an (1, 2)

*
-g-open set G such that x  G  N.  

Definition 4.17. A subset N of a bitopological space (X, 1, 2), is called a (1, 2)
*
-g-nbd of A  (X, 1, 2) iff there exists a (1, 

2)
*
-g-open set G such that A  G  N.  

Theorem 4.18. Every nbd N of x  (X, 1, 2) is a (1, 2)
*
-g-nbd of (X, 1, 2).  

Proof. Let N be a  nbd of point x  (X, 1, 2). To prove that N is a (1, 2)
*
-rg-nbd of x. By definition of nbd, there exists an open set 

G such that x  G  N. As every open set is (1, 2)
*
- g-open such that x  G  N. Hence N is (1, 2)

*
-g-nbd of x. 

 

Remark 4.19. In general, a (1, 2)
*
-g-nbd N of x  (X, 1, 2) need not be a nbd of x in (X, 1, 2), as seen from the following 

example.  

 

Example 4.20. Let X = {a, b, c, d, e} with topology 1 = {, {a, b}, {a, b, c, d}, X} and 2 = {, {c, d}, {a, b, c, d}, X} Then (1, 2)
*
-

g-O(X) = {, X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {b, c, d}, {c, d, e}, 

{a, b, c, d}, {a, b, d, e}, {a, c, d, e}, {b, c, d, e}}. The set {a, d} is (1, 2)
*
-g-nbd of the point a, there exists an (1, 2)

*
-g-open set 

{a} is such that a  {a}  {a, d}. However, the set {a, d} is not a  nbd of the point a, since no open set G exists such that a  G  {a, 

d}.  
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Theorem 4.21. If a subset N of a space (X, 1, 2) is (1, 2)
*
-g-open, then N is a (1, 2)

*
-g-nbd of each of its points.  

Proof. Suppose N is (1, 2)
*
-g-open. Let x ∈ N. We claim that N is (1, 2)

*
-g-nbd of x. For N is a (1, 2)

*
-g-open set such that x 

 N   N. Since x is an arbitrary point of N, it follows that N is a (1, 2)
*
-g-nbd of each of its points.  

 

Definition 4.22. Let x be a point in a space (X, 1, 2). The set of all (1, 2)
*
-g-nbhd of x is called the (1, 2)

*
-g-nbd system at x, 

and is denoted by (1, 2)
*
-g-N(x). 

  

Theorem 4.23. Let (X, 1, 2) be a bitopological space and for each x  (X, 1, 2). Let (1, 2)
*
- g-N(x) be the collection of all (1, 

2)
*
-g-nbds of x. Then we have the following results.  

(i) ˅ x  (X, 1, 2), (1, 2)
*
-g-N(x)   .  

(ii) N  (1, 2)
*
-g-N(x) ⇒ x N.  

(iii) N  (1, 2)
*
-g-N(x), M   N ⇒ M  (1, 2)

*
-g-N(x).  

(iv) N  (1, 2)
*
-g-N(x), M  (1, 2)

*
-g-N(x) ⇒ N  M   (1, 2)

*
-g-N(x).  

(v) N  (1, 2)
*
-g-N(x) ⇒ there exists M  (1, 2)

*
-g-N(x) such that M  N and M  (1, 2)

*
- g-N(y) for every y  M. 

Proof. (i) Since (X, 1, 2) is a (1, 2)
*
-g-open set, it is a (1, 2)

*
-g-nbd of every x  (X, 1, 2). Hence there exists at least one 

(1, 2)
*
-g-nbd (namely - (X, 1, 2)) for each x  (X, 1, 2). Hence (1, 2)

*
-g-N(x)    for every x  (X, 1, 2).  

(ii) If N  (1, 2)
*
-g-N(x), then N is a (1, 2)

*
-g-nbd of x. So by definition of (1, 2)

*
-g-nbd, x  N.  

(iii) Let N  (1, 2)
*
-g-N(x) and M   N. Then there is a (1, 2)

*
-g-open set G such that x  G  N. Since N  M, x  G  M and 

so M is (1, 2)
*
-g-nbd of x. Hence M  (1, 2)

*
-g-N (x).  

(iv) Let N  (1, 2)
*
-g-N(x) and M  (1, 2)

*
-g-N(x). Then by definition of (1, 2)

*
-rg-nbd x  G1    G2  N  M  (i). Since 

G1   G2 is a (1, 2)
*
-g-open set, (being the intersection of two (1, 2)

*
-g-open sets), it follows from (i) that N  M is a (1, 2)

*
-

g-nbd of x. Hence N  M  (1, 2)
*
-g-N(x).  

(v) If N  (1, 2)
*
-g-N(x), then there exists a (1, 2)

*
-g-open set M such that x  M  N. Since M is a (1, 2)

*
-g-open set, it is (1, 

2)
*
-g-nbd of each of its points. Therefore M  (1, 2)

*
-g-N(y) for every y M. 

5. SOME (1, 2)
*
-G-BITOPOLOGICAL FUNCTIONS 

In this section, we shall recall the definitions of some functions used in the sequel. Further we introduce some (1, 2)
*
-g-continuous 

functions in bitopological spaces. 

  

Definition 5.1. A function f : X → Y is said to be  

(i) (1, 2)∗--continuous  [9] if f 
−1

(F) is (1, 2)
*
--closed in X for every 1,2-closed set F of Y; 

(ii) (1, 2)∗-g-continuous  [9] if f 
−1

(F) is (1, 2)
*
-g-closed in X for every 1,2-closed set F of Y; 

(iii) (1, 2)∗-g-continuous if f 
−1

(F) is (1, 2)
*
-g-closed in X for every 1,2-closed set F of Y;  

(iv) (1, 2)∗-rg-continuous  [9] if f 
−1

(F) is (1, 2)
*
-rg-closed in X for every 1,2-closed set F of Y;  

(v) (1, 2)∗-R-map [4] if f
 −1

(F)  (1, 2)∗-RO(X) for every F  (1, 2)∗-RO(Y); 

(vi) completely (1, 2)∗-continuous [4] if f 
−1

(F)  (1, 2)
*
-RO(X) for every 1,2-open set F of Y.  

(vii) (1, 2)∗--continuous  [2] if f 
−1

(F) is (1, 2)
*
--closed in X for every 1,2-closed set F of Y; 

 

Definition 5.2. A function f : X → Y is said to be  

(i) almost (1, 2)
*
-continuous [4] if f 

−1
(F) is 1,2-open in X for every F  (1, 2)

*
-RO(Y);  

(ii) almost (1, 2)
*
--continuous [2] if f 

−1
(F) is (1, 2)

*
--closed in X for every F  (1, 2)

*
-RC(Y);  

(iii) almost (1, 2)
*
--continuous  [9] if f 

−1
(F) is (1, 2)

*
--closed in X for every F  (1, 2)∗-RC(Y); 

(iv) almost (1, 2)
*
-g-continuous  [9] if f 

−1
(F) is (1, 2)

*
-g-closed in X for every F  (1, 2)∗-RC(Y ); 

(v) almost (1, 2)
*
-g-continuous if f 

−1
(F) is (1, 2)

*
-g-closed in X for every F  (1, 2)∗-RC(Y);  

(vi) almost (1, 2)
*
-rg-continuous  [9] if f 

−1
(F) is (1, 2)

*
-rg-closed in X for every F  (1, 2)∗-RC(Y); 
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Remark 5.3. From the definitions stated above, we obtain the following diagram:  

 

complete (1, 2)
*
-continuity                                  (1, 2)

*
-R-map 

                                                                                          

      (1, 2)
*
--continuity                             almost (1, 2)

*
--continuity  

                                                                                          

       (1, 2)
*
-continuity                                  almost (1, 2)

*
-continuity  

                                                                                          

     (1, 2)
*
--continuity                               almost (1, 2)

*
--continuity  

                                                                                         

    (1, 2)
*
-g-continuity                             almost (1, 2)

*
-g-continuity   

                                                                                         

  (1, 2)
*
-g-continuity                          almost (1, 2)

*
-g-continuity  

                                                                                         

  (1, 2)
*
-rg -continuity                          almost (1, 2)

*
-rg-continuity 

 

The following examples enable us to realize that none of the implications in the above diagram is reversible.  

 

Example 5.4. Let X = {a, b, c}, 1 = {, X, {a}, {a, c}} and 2 = {, X, {c}}. Let Y = {a, b, c}, 1 =   {, Y, {a}} and 2 = {, Y, 

{b}}. Define f : X → Y as f(a) = c; f(b) = b; f(c) = a. Clearly f is almost (1, 2)
*
-rg-continuous but not almost (1, 2)

*
-g-continuous.  

 

Example 5.5. Let X = {a, b, c}, 1 = {, X, {a}, {a, c}} and 2 = {, X, {c}}. Let Y = {a, b, c}, 1 =   {, Y, {a}} and 2 = {, Y, 

{b}}. Define f : X → Y as f(a) = a, f(b) = c, f(c) = b. Clearly f is (1, 2)
*
-continuous as well as (1, 2)

*
-rg-continuous but it is not 

completely (1, 2)∗-continuous.  

 

Example 5.6. Let X = Y = {a, b, c}, 1 = {, X, {a}} and 2 = {, X, {a, b}}. Let 1 = {, Y, {a}} and 1 = {, Y, {a, c}}. Define f : 

X → Y as f(a) = b; f(b) = c; f(c) = a. Clearly f is both (1, 2)
*
-g-continuous and almost (1, 2)

*
-g-continuous but it is neither (1, 

2)
*
--continuous nor (1, 2)

*
-g-continuous. It is not (1, 2)

*
-continuous 

 

Example 5.7. Let X = Y = {a, b, c}, 1 = {, X, {a}} and 2 = {, X, {a, b}}. Let 1 = {, Y, {a}} and 1 = {, Y, {a, c}}. Define f : 

X → Y as f(a) = c, f(b) = a, f(c) = b. Clearly f is both (1, 2)
*
-g-continuous and almost (1, 2)

*
-g-continuous. But it is neither (1, 

2)
*
-continuous nor (1, 2)

*
--continuous.  

 

Example 5.8. Let X = Y = {a, b, c}, 1 = {, X, {a}} and 2 = {, X, {b}, {a, b}}. Let 1 = {, Y, {a}} and 2 = {, Y, {b}}. Define 

f : X → Y as f(a) = b; f(b) = a; f(c) = c. Clearly f is almost (1, 2)
*
-continuous as well as almost (1, 2)

*
-g-continuous.   

 

Example 5.9. Let X = Y = {a, b, c}, 1 = {, X, {a}} and 2 = {, X, {b, c}}. Let 1 = {, Y, {b}, {c}, {b, c}} and 2 = {, Y, {a, 

b}}. Define f : X → Y as f(a) = a; f(b) = c; f(c) = b. Clearly f is almost (1, 2)
*
-g-continuous as well as almost (1, 2)

*
-g-continuous 

but it is neither almost (1, 2)
*
-continuous nor almost (1, 2)

*
--continuous. It is neither (1, 2)

*
-continuous nor (1, 2)

*
--continuous. 

 

Definition 5.10. A space X is said to be (1, 2)
*
-g-T1/2 if every (1, 2)

*
-g-closed set of X is (1, 2)

*
--closed in X.  

 

Definition 5.11. A function f : X → Y is said to be (1, 2)
*
-g-irresolute if f 

−1
(F) is (1, 2)

*
- g-closed in X for every (1, 2)

*
-g-

closed set F of Y .  

 

6. CONCLUSION 
In this paper, we introduce and investigate a new class of sets called (1, 2)∗-g-closed and some new functions called (1, 2)∗-

g-continuous, almost (1, 2)∗-g-continuous functions in bitopological spaces. Moreover we obtain the relationships among some 

existing closed sets like (1, 2)∗-g-closed, (1, 2)∗-semi-closed, (1, 2)∗--closed, (1, 2)∗--closed sets and their generalizations. Also 

we study some basic properties of (1, 2)∗-g-closed sets. Further, we introduce (1, 2)∗-g-neighbourhood and discuss some basic 

properties of (1, 2)∗-g-neighbourhood. The (1, 2)∗-g-closed sets can be used to derive a new decomposition of unity, closed map 

and open map, homeomorphism, closure and interior and new separation axioms. This idea can be extended to ordered topological, 

ordered bitopological and fuzzy topological spaces etc. 
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