
 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---49

CHECKING ARMSTRONG NUMBER USING FUNCTION check_arm()

FUNCTION USING SEQUENTIAL SEARCH METHODOLOGY AND

check_rand_arm() FUNCTION FURTHER COMPARISON BETWEEN

BOTH THE FUNCTIONALITIES BY EVALUATING THE TIME

COMPLEXITY OF THE FUNCTIONS - A CASE STUDY

6415 CDT Rohit Raj1
Class- XII 2023-24, Sainik School Amaravathinagar

Post: Amaravathinagar,Udumalpet Taluka,Tirupur Dt,Tamilnadu State

ABSTRACT
The time complexity of an algorithm is the amount of time taken by the algorithm to complete the execution of function of its

input length, n. The time complexity of an algorithm is denoted by using asymptotic notations.

 This manuscript specifically examines the efficiency of functions check_arm() and check_rand_arm(), these

methodologies are used to find an Armstrong number in a vector. The efficiency of these two functions are calculated and

assessed by using time complexity of functions. Further the space complexity also calculated, since both algorithm uses same

space as per the input function. The endeavour of this paper is to express the better algorithm with respect to time.

KEYWORDS: check_arm(ca) check_rand_arm(cra), Random number (rn), Runtime Complexity (rc), Big OO(n), Big

ThetaΘ(n), Big OmegaΩ(n), Generalised approach (ga)

1. INTRODUCTION
Armstrong number is the number in any given number base,

which forms the total of the same number, when each of its

digits is raised to the power of the number of digits in the

number. It is of special interest to new programmers and those

learning a new programming language because of the way the

number behaves in a given number base. For example, using a

simple number 153 and the decimal system, we see there are 3

digits in it. If we do a simple mathematical operation of raising

each of its digits to the power of 3, and then totalling the sum

obtained, we get 153. That is 1 to the power of 3, 5 to the power

of 3, 3 to the power of three is 1 125 27 and sum is 153. This

can also be represented as 1^3 5^3 3^3=153. The number 153

is an example of the Armstrong number which also has a

unique property that one can use any number system .Thus if

the number obtained totals to or equals the original number

when each of the digits is raised to the power of the number of

digits in the number and added to obtain a number, in any given

number system, such a number is called an Armstrong number.

2. RELATED WORK

in number theory, an Armstrong number in a given number

base b is a number that is the sum of its own digits each raised

to the power of the number of digits. To put it simply, if I have

a 3-digit number then each of the digits is raised to the power

of three and added to obtain a number.

3. METHODOLOGY
There are different Python programs associated with finding an

Armstrong number. You can check whether a given number is

an Armstrong number or not. Alternatively, you can find all the

Armstrong numbers within a specified range of numbers. We

will go with both these approaches related to the identification

of Armstrong numbers, in Python.

The methodology I have used to check Armstrong number is

function check_arm() and check_random_arm().

The various programming languages has the capability to

generate Armstrong number(ln) and store it in a file

(permanently on secondary storage device). During the course

of research, it was decided to use python programming

language due to its large collection of library modules and the

availability of online support.

ALGORITHM FOR CHECKING ARMSTRONG

NUMBER
 STEP 1: The number of digits in

 num is found out

STEP 2: The individual digits are

 obtained by performing

 num mod 10, where the

 mod is the remainder

 module.

STEP 3: The digit is raised to the

 power of the number of

 digits and stored.

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---50

 STEP 4: Then the number is

 divided by 10 to obtain

 the second digit.

STEP 5: Steps 2, 3 and 4 are

 repeated until the

 value of num is

 greater than 0

 STEP 6: Once num is less than

 0, end the while loop

 STEP 7: Check if the sum

 obtained is same as the

 original number

 STEP 8: If yes, then the number

 is

 an Armstrong number.

PYTHON PROGRAM TO CHECK THE ARMSTRONG

NUMBER AND STORING IN SECONDARY STORAGE

DEVICE IN THE FORM OF TEXT FILE.

num = int(input("Enter a number: "))

sum = 0

n1 = len(str(num))

temp = num

while temp > 0:

 digit = temp % 10

 sum += digit ** n1

 temp //= 10

if num == sum:

 print(num,"is an Armstrong number")

else:

 print(num,"is not an Armstrong number")

ALGORITHM TO FIND A ARMSTRONG

NUMBER IN A TEXT FILE
1.Convert the input number into a string usingstr(num).

2. Find the length of the string using len(num_str) and store it

inn.

3. Initialize a variable sum to zero.

4. Iterate through each digit in the string using a for loop, and

convert each digit back to an integer using int(digit).

5. Raise each digit to the power of n using int(digit)**n, and add

the result to sum.

6. After the loop is complete, check whether sum is equal to

num.

7. If sum is equal to num, return True (the input number is an

Armstrong number).

8. If sum is not equal to num, return False (the input number is

not an Armstrong number).

PYTHON PROGRAM TO CHECK ARNSTRONG

NUMBER
def is_armstrong(num):

 num_str = str(num)

 n = len(num_str)

 sum = 0

 for digit in num_str:

 sum += int(digit)**n

 if sum == num:

 return True

 else:

 return False

num=153

print(is_armstrong(num))

 4. COMPLEXITY OF ALGORITHM
In computer science, analysis of algorithms is a very crucial part.

It is important to find the most efficient algorithm for solving a

problem. It is possible to have many algorithms to solve a

problem, but the challenge here is to choose the most efficient

one.[2]

There are multiple ways to design an algorithm, or considering

which one to implement in an application. When thinking

through this, it’s crucial to consider the algorithm’s time

complexity and space complexity.[3]

5. SPACE COMPLEXITY
 The space complexity of an algorithm is the amount of space

(or memory) taken by the algorithm to run as a function of its

input length, n. Space complexity includes both auxiliary space

and space used by the input.[3]

Auxiliary space is the temporary or extra space used by the

algorithm while it is being executed. Space complexity of an

algorithm is commonly expressed using Big (O(n)) notation.[3]

The Space complexity is ignored in this research paper, since the

space complexity of particular problem is not considered so

important.

6. TIME COMPLEXITY
The time complexity of an algorithm is the amount of time taken

by the algorithm to complete its process as a function of its input

length, n. The time complexity of an algorithm is commonly

expressed using asymptotic notations:[3]

Big O - O(n)

Big Theta - Θ(n)

Big Omega - Ω(n)

It’s valuable for a programmer to learn how to compare

performances of different algorithms and choose the best time-

space complexity to solve a particular problem in the most

efficient way possible.[3]

Big O notation is used in Computer Science to portrait the

performance or complexity of an algorithm.

Big O specifically defines the worst-case scenario of an

algorithm, and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm. here O stands for order of growth.

Big Theta(Θ) is used to represent the average case scenario of

an algorithm and can be used to describe the execution time

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---51

required or the space used (e.g. in memory or on disk) by an

algorithm.

Big Omega (Ω)is used to represent the best case scenario of an

algorithm and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm.

These three methods are the most common and very popular

methods of design and analysis of an algorithm which are used

for finding the efficiency of the program.

7. RUNTIME COMPLEXITY OF CHECKING

ARMSTRONG NUMBER
Input (

No of

Digits)

check_arm(ca)

Function

check_rand_arm(cra)

Function

3 0.0 0.0

4 0.0 0.0

5 0.0 0.0

6 0.0 0.0

7 0.0 0.0

8 0.0 0.0

9 0.0 0.0

10 0.015 0.0

11 0.015 0.0

Graphical Representation of Runtime complexity of both the

methods

8.GENERALISED APPROACH - rc

In the normal approach the program checks for the given number

prime or not. The time complexity of the algorithm for worst

case is denoted as:

Big (O(n))

9.LUCAS METHOD (LMM) - rc

The time complexity of the LUCAS Method is calculated as

Big (O(14))

10. CONCLUSION
The Lucas mathematical methodology has the greater efficiency

for checking prime when comparing with general approach.

Further it is also observed that generating prime series and

storing in a file is one time process and it is time consuming but

once the file is prepared the performance of the code is much

higher than the normal approach. In addition to this it is also

observed that the execution of expression also depends on the

hardware configuration.

11.ACKNOWLEDGEMENT
Apart from the efforts of me, the success of any work or project

depends largely on the encouragement and guidelines of many

others. I take this opportunity to express my gratitude to the

people who have been instrumental in the successful completion

of this research paper.

I express deep sense of gratitude to almighty God for giving me

strength for the successful completion of the research paper.

I express my heartfelt gratitude to my parents for constant

encouragement while carrying out this research paper.

I express my deep sense of gratitude to the luminary The

Principal Capt. (IN) K Manikandan, Sainik School

Amaravathinagar who has been continuously motivating and

extending their helping hand to us.

I express my sincere thanks to the Administrative officer LT

COL K DEEPU, Sainik school Amaravathinagar

I express my sincere thanks to the academician The Wg Cdr

Deepti Upadhayay, Sainik School Amaravathinagar, for

constant encouragement and the guidance provided during this

research.

My sincere thanks to Mr.Praveen Kumar

MurigeppaJigajinni, Master In-charge, A guide, Mentor and

great motivator,who critically reviewed my paper and helped in

solving each and every problem, occurred during

implementation of this research paper.

12. REFERENCES
1. https://en.wikipedia.org/wiki/Lucas_number
2. https://www.freecodecamp.org/news/time-complexity-of-

algorithms/
3. https://www.educative.io/edpresso/time-complexity-vs-

space-complexity

0

0.005

0.01

0.015

0.02

1 2 3 4 5 6 7 8 9

check_arm(c
a) Function

check_rand_
arm(cra)
Function

https://doi.org/10.36713/epra2013
https://en.wikipedia.org/wiki/Lucas_number
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.educative.io/edpresso/time-complexity-vs-space-complexity
https://www.educative.io/edpresso/time-complexity-vs-space-complexity

