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ABSTRACT 
The research demonstrates how having access to this knowledge enables winemakers to strategically harvest fruit packages based on yield 

and/or fruit quality requirements and product requirements. Economic advantages of each of these outcomes include lower input costs, 

increased productivity, and a better final product. The cost of integrating decision-support systems on a field scale, as well as the accessibility 

of operating systems and devices, will be key factors in the implementation and regular use of smart sensing techniques because they present 

enormous opportunities for producers at all stages. To enable the wide adoption of such technology, the issue of data rights and security, 

especially when data is obtained through third parties, needs to be resolved in the upcoming years. 
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INTRODUCTION 
As technology develops and advances, many 

agricultural sectors assess what improvements can be 

incorporated into their operations to provide management 

support (Fountas, Espejo-Garca, Kasimati, Mylonas, & Darra, 

2020). This is crucial for the wine industry in particular 

because farmers around the world are facing challenges from 

climate change, varying atmospheric conditions, compressed 

seasons, drought, heat, labor shortages, and rising production 

costs (Koufos, Mavromatis, Koundouras, & Jones, 2020; Soar, 

Sadras, & Petrie, 2008). In order to examine vineyard 

management strategies, regular monitoring of biophysical 

variables and grapevine performance is therefore necessary. 

Today, winemakers can access and use precise data and 

information about their vineyards as a basis for making the 

best decisions they can in order to maintain productivity while 

also remaining financially and environmentally sound. This 

toolbox consists of GPS, GIS, geostatistics, AI, and DSS in 

addition to remote and local sensing technologies. In the 

viticulture sector, the terms "precision" or "digital viticulture" 

are frequently used to describe the prudent creation and 

application of such procedures (Ammoniaci, Kartsiotis, Perria, 

& Storchi, 2021). 

Non-invasive sensing methods, including as 

spectroscopy, MSI, HSI, Chl fluorescence, thermography, ER, 

LiDAR, and CV, can be utilized in wine grape production 

systems to gather crucial information about the vineyard and 

the plants growing there (Fountas, Mylonas, et al., 2020). 

They can be used as portable sensors, installed on or 

incorporated into machinery, automated robotic systems, and 

ground-based platforms like piloted vehicles, as well as aerial 

platforms like satellites, small planes, and UAVs or drones 

(Matese & Di Gennaro, 2018; Matese et al., 2015). 

Additionally, the widespread use of cellphones and "apps" has 

completely changed how vineyard producers may access and 

gauge vine performance and fruit attributes. Thanks to the use 

of specifically constructed robotic devices with non-invasive 

sensing technologies, many vineyard operations will likely be 

mechanized in the future (Matese et al., 2015; Suarez et al., 

2021). 

With the aid of these spatially enabled digital 

technologies, grape growers can monitor changes in vine 

parameters such as canopy size (Sanz et al., 2018), water 

(Gutiérrez, Diago, Fernández-Novales, & Tardaguila, 2018), 

and nutritional status (Diago et al., 2016). They can also 

monitor changes in yield (Aquino, Millan, Diago, & 

Tardaguila, 2018), grape composition (Gut Wine makers can 

more effectively apply inputs like fertilizers, sprays, and 

irrigation water through targeted applications thanks to the 

ability to trace the geographical distribution in the vine, soil, 

and geographical aspects across vineyards. They can also 

harvest fruit parcels carefully in accordance with various yield 

and/or fruit quality standards and product specifications 

(Bramley, Ouzman, & Trought, 2020). 

This article's goal is to showcase several digitally-

based viticulture applications that are either already in use 

locally or are being developed. The study will assess the 

prospects that these methods provide for growing grapes and 

making wine in response to growing environmental issues, 

such as changes in climatic and soil conditions. The objective 

is to increase the efficiency of the winemaking processes and 

lower production costs. The study will also discuss how 

various sensing methods work and how artificial intelligence 

might be used in viticulture. 

 

A positive implication for viticulture is artificial intelligence. 

Since AI can transform data into different types of 

information that grape farmers may use to make informed 

decisions, it may be highly useful. All of the sensing methods 

and platforms mentioned earlier work together to give today's 

grape growers a high level of data collection proficiency, even 

at tiny scales. But further research development will be 

necessary. To learn more about how to model the crop into 

precise statistics and extract more information, a variety of 

other uses and developments must be investigated. 

Furthermore, as crop data enables precise management of 
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ecologically vital resources like water and soil, in addition to 

being significant to grape producers for farming methods, it 

has both direct and indirect environmental uses. 

The most widely used field for automating knowledge 

in agriculture, particularly viticulture, is machine learning 

(ML) (Cai et al., 2019; Fuentes et al., 2018). The study of 

getting computers to learn on their own, generally speaking, 

so they can transform input into useful knowledge is known as 

machine learning (ML), and it is at the core of artificial 

intelligence (AI) (Jordan & Mitchell, 2015). Therefore, grape 

farmers and winemakers can use machine learning in 

conjunction with the numerous data collection options 

presently available to deploy data-driven solutions to enhance 

and optimize their production processes. Training is used to do 

this, which comprises building mathematical models that are 

fed input from data. There are various processes involved in 

machine learning. 

The next step is to train the models that make up 

machine learning after all the data has been correctly 

structured and handled (i.e., training models using algorithms 

fed by data). Model training is the most challenging stage and 

one that requires user experience. This is due to the need of 

comprehending the various algorithms that can be used, their 

advantages and disadvantages, and the best selection for the 

data at hand. In viticulture, numerous machine learning 

techniques have been applied to achieve a variety of 

objectives. For instance, SVMs for disease detection, 

classification of grape types, and yield forecasting, an ideal 

method for disease identification using imaging, deep learning 

for image classification in vineyards, and disease detection 

using hyperspectral data evaluation (Bendel et al., 2020). 

Advanced models for precision agriculture have been built 

using a variety of deep learning techniques, including 

convolutional neural networks (Barré et al., 2019; Hsieh & 

Kiang, 2020); autoencoders (Karim et al., 2020; Yu, Lu, & 

Liu, 2018); and recurrent neural networks (Chen, Xiao, Zhang, 

Xie, & Wang, 2020; L.-W. Liu, Hsieh, 

A model can be used for more things when it has been 

adjusted, trained, and verified. For instance, combining a 

sensor and a system with the learned model would be 

necessary in digital viticulture. The model would continuously 

gather data from the sensor and produce forecasts based on the 

discovered directions and relationships. Although it is possible 

to take advantage of this and restart the process utilizing the 

newly gathered data because this is also a data-gathering 

procedure. It's crucial to keep in mind that a model's output 

should be considered more of a tool than a final product. 

 

CONCLUSION 
This article provides a thorough overview of several 

digital non-invasive procedures that are either currently being 

developed or used in the wine and grape business. Enhancing 

resource use efficiency across all agricultural systems is 

necessary to address current and future issues like climate 

change, the environment, waste, labor shortages, and growing 

production prices. The use of various proximal and remote 

sensing technologies has improved our understanding of 

vineyard variation with respect to spatial disparities, 

sequential dynamics, and underlying causes. According to the 

study, having this knowledge enables winemakers and grape 

producers to use inputs more efficiently through targeted 

applications and harvest fruit packages strategically in 

accordance with yield and/or fruit quality criteria and product 

requirements. Economic advantages of each of these outcomes 

include lower input costs, more productivity, and a better final 

product. It is difficult to demonstrate how precise, digital 

viticulture and related technology benefit the environment. 

There are currently no known examples from the wine and 

grape industries. However, environmental benefits are 

inevitable given the tightening regulations on the use of 

chemicals in agriculture and the ongoing commercialization of 

equipment outfitted with sensors and VRA technology to 

measure canopy size. 
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