

EPRA International Journal of Research and Development (IJRD)

Volume: 8 | Issue: 4 | April 2023

- Peer Reviewed Journal

KNOT THEORETIC CLOSURE FOR A DEFINITE METRIC IN A FINITE TIME

Sanjeevan Singha Roy^{1,2}, Deep Bhattacharjee², Saptashaw Das³ ¹Birla Institute of Technology, Mesra, Ranchi, 835215

¹Birla Institute of Technology, Mesra, Ranchi, 835215 ²Electro–Gravitational Space Propulsion Laboratory, India ³Bennett University, India

> Article DOI: <u>https://doi.org/10.36713/epra13028</u> DOI No: 10.36713/epra13028

ABSTRACT

Any topological space endowed with a metric (H, g) for a Euler-Poincare' polyhedral equation RHS of $\mathcal{X} \equiv 2 - 2g = 0$ for the throat ∂ can twist in and out from the genus by making a knot for a time evolution $\{T \nearrow\} \ll \infty$ for a transition from ΛN to NM. **KEYWORDS:** Genus – Twist – Closure – Knot

METHODOLOGY

Considering a topological space H with a metric signature (H, g) in the geometries^[1],

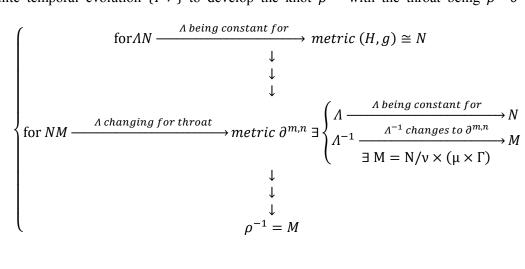
 $\Omega > 1$ applicable $\Omega < 1$ applicable $\Omega = 1$ not – applicable

For a generator of the evolution Δ there exists, over a genus parameterization $\mu > 0$ satisfying Euler Polyhedral equation RHS of $\mathcal{X} = 0$ in a finite evolution of time $\{T \nearrow\}$; the generator Δ takes a finite period for the operation of twisting to complete^[2],

Such that for any twist, there exists two operations; the 'in' operation $\overline{\nearrow}$ where the manifold bends by entering into the genus $\overline{\nearrow}$ and the 'out' operation $\overline{\nearrow}$; such that $\overline{\nearrow}, \overline{\nearrow}$ exists as a subset of \nearrow as $\overline{\nearrow}, \overline{\nearrow} \subset \nearrow$ for the evolution period $\{T \nearrow\}$ over a metric representation (H, g) in such a way that there exists a generation of a 'throat' or a 'space arising out of deforming the metric (H, g)' for a structure formulation of that generating throat having an affine value $\partial^{m,n}$ where the representation takes place as^[3],

SJIF Impact Factor (2023): 8.574| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD) - Peer Reviewed Journal


Volume: 8 | Issue: 4 | April 2023

$$\begin{array}{c} \partial^{m,n} \equiv \partial^{(H,g),n} \\ \downarrow \\ \partial^{m,n} \equiv \partial^{m,(H,g)} \\ \downarrow \\ \partial^{m,n} \equiv \rho^{-1} \partial^{m,n} \end{array}$$

For a representation of the $\overline{\mathcal{A}}, \overline{\overline{\mathcal{A}}}$ in a case where there is $\partial^{(H,g),n}$ for the throat to make 'in' and the 'out' – $\partial^{m,(H,g)}$ for a critical knot to establish in the around the genus as ρ^{-1} where for the potential of developing the 'knot' - ρ in a 'inverse representation' ρ^{-1} to structure the whole process of intertwined m, n as a 'orbit parameterization'^[4],

$$\sum_{m,n}$$

Through a finite temporal evolution $\{T \nearrow\}$ to develop the knot ρ^{-1} with the throat being $\rho^{-1}\partial^{m,n}$ through the evolution^[5],

⇒ Г

is the point of the initiation of deformation with the value of genus $\mu > 0$ is the multiplier for which the curve v starts to contract to develop the throat $\partial^{m,n}$ in the resultant formulation of the mapping with $Q \cong M$,

$$\zeta: Q \longrightarrow N/\rho^{-1}$$
 for evolution $\{T \nearrow\} \ll \infty$

for the generator of the **knot** $\tilde{\Delta} \exists \rho \approx \nu \times (\mu \times \Gamma)$ and $\rho^{-1} \approx N/\nu \times (\mu \times \Gamma)$ for the throat manifold M in the transformation $\Lambda N \to NM$ having the potential for creating the knot $\rho^{-1}\partial^{m,n}$ through a closure of further repetition restricted via the closure index *i* such that,

$$\coprod_{i \in \tilde{\Delta}} \zeta_i / \sim$$

SJIF Impact Factor (2023): 8.574 ISI I.F. Value: 1.241 Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD) - Peer Reviewed Journal

Volume: 8 | Issue: 4 | April 2023

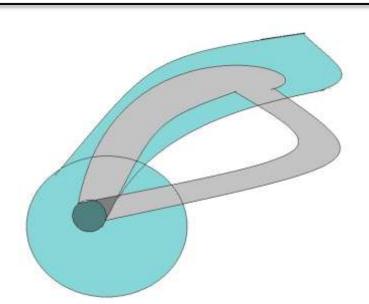


Figure: The representation of the 'in' and 'out' of the topological manifold that closed via a closure thereby with twists from the original manifold having extensions makes a knot of Euler – Poincare characterises 1 as in the Trefoil case of Knot.

REFERENCES

- 1. Bhattacharjee, D. (2022a). Establishing equivalence among hypercomplex structures via Kodaira embedding theorem for non-singular quintic 3-fold having positively closed (1,1)-form Kähler potential $i2^{-1}\partial\partial^*p$. Research Square. https://doi.org/10.21203/rs.3.rs-1635957/v1
- Bhattacharjee, D. (2022g). Suspension of structures in two-dimensional topologies with or without the presence of $g \ge 1$ genus 2. deformations for canonical 2²n stabilizer points. Research Square. https://doi.org/10.21203/rs.3.rs-1798323/v1
- Bhattacharjee, D. (2022l). Non-commutativity Over Canonical Suspension η for Genus $g \ge 1$ in Hypercomplex Structures for Potential 3. ρφ. Asian Research Journal of Mathematics, 332–341. https://doi.org/10.9734/arjom/2022/v18i11607
- Bhattacharjee, D., Samal, P., Bose, P. N., Behera, A. K., & Das, S. (2023). Suspension η for β bundles in ± 1 geodesics in $g \ge 1$ genus 4 creations for loops for a Topological String Theory Formalism. TechRxiv. https://doi.org/10.36227/techrxiv.22339732.v1
- 5. Adams, C. C. (2004). The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. American Mathematical Soc.