# GENERATORS OF BOREL MEASURABLE COMMUTATIVE ALGEBRA ON COMPACT HAUSDORFF TAKING VON NEUMANN AW* OVER *-ISOMORPHISM 

Deep Bhattacharjee ${ }^{1,2}$<br>${ }^{1}$ Electro Gravitational Space Propulsion Laboratory<br>${ }^{2}$ Theoretical Physics Research Division of AATWRI Aerospace \& Defence Research Directorate

Article DOI: https://doi.org/10.36713/epra11269
DOI No: 10.36713/epra11269

For any complex valued functions over any topological space $\mathcal{F}$ there exists a relation in von Neumann algebras of *-graded that is bounded on compact Hausdorff where for category- I, II, III there exists a commutative form of AW* algebras such that to satisfy a monotone complete $C^{*}$ algebra suffice an isomorphic factor $\mathfrak{f}$ on the same $A W^{*}$ tamed as $W^{*}$ having the generators $\eta$ for a generic group $\eta(\mathcal{G})$ for 2 -groups $\mathcal{G}_{+}$and $\mathcal{G}_{-}$for the former being additive integers generating the later free group for AW algebras where compact Hausdorff $\mathcal{C H}$ a Borel measure $\beta$ exists in compact set $\mathcal{C}$ norms the associated Hausdorff space over a locally finite $\sigma-$ algebra via $\beta(\mathcal{C}) \lessdot \infty$.
KEYWORDS AND PHRASES - Commutative algebra, Operator theory, Hilbert space.
Mathematical subject Classification (MSC) - primary (13-XX, 52-XX), secondary (13-11, 52B20)

## METHOD (I) - Establishing Equivalence

For any positive integer $\rho$ we can consider any idempotent element for a general property to suffice that $\rho$ in the relation of an associated element $\alpha$ such that $\alpha^{1}=\alpha^{1+1}=\alpha^{1+1+1}=\alpha^{1+1+1+1}=\cdots=\alpha^{\rho}$ where the simplification table states $\alpha^{1}=\alpha^{1+1}$. With this if one takes the annihilator ${ }^{[1-5]}$,

$$
\left\{\begin{array}{l}
\text { left } \\
\text { right }
\end{array} \forall \text { concerned commutative rings } R \exists \text { annihilator } \mathcal{A} \exists \mathcal{A} \text { for } R \text { suffice } \mathcal{A}_{R}\right.
$$

Where for the left module if there is a set $\mathcal{E}=\{d\} \exists d$ is any number of elements of set $\mathcal{E}$ then $\mathcal{A}_{R}$ or the annihilator or ring $R$ suffice a relation as per the element $\mu$ of ring $R$; we get 3 -properties,

$$
\text { (A) }\left\{\begin{array}{c}
\mathcal{E}=\{d\} \\
\mathcal{A}_{R} \text { exists when } d \subseteq \mathcal{E} \forall
\end{array} \mu \in R \text { and } \mu^{0} \in d\right.
$$

# SJIF Impact Factor 2022: 8.197| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 <br> ISSN: 2455-7838(Online) 

EPRA International Journal of Research and Development (IJRD)
Volume: 7 | Issue: 9 | September 2022

- Peer Reviewed Journal

Then the $A W^{*}$ algebra suffice,

$$
\text { (B) }\left\{\begin{array}{l}
C^{*}-\text { algebra } \\
\text { Baer } *-\text { ring }
\end{array}\right.
$$

$\exists$ Baer * - ring suffice $2-$ properties as,

$$
\text { (C) }\left\{\begin{array}{c}
\alpha^{1}=\alpha^{1+1} \\
\text { left annihilator } L
\end{array}\right.
$$

There exists a Rickart *-ring to relate $(A)$ and ( $C$ ) as,

$$
L \subseteq \operatorname{ring} R \text { for }\{\mu \in R \mid \mu L=\{0\}\}
$$

Thus getting the relation to suffice $(B)$ in a concrete way with $L$ as the left-annihilator, the generalized $\mathrm{W}^{*}$-algebra which is again a special case of $C^{*}$-algebra for any Hilbert space $h^{*}$ there is a weak operator topology for the operator $\mathcal{J}$ such that ${ }^{[2,4]}$,

$$
W^{*}-\text { algebra } \simeq C^{*}-\text { algebra for a } \operatorname{map} \pi: \mathcal{J} \rightarrow\left\langle\mathcal{J}_{i, j}\right\rangle
$$

Where $i, j$ are vectors of that Hilbert space where isomorphism of the operator exists for an involution parameter $\iota:$ ring $R$ to ring $R^{o p}$ establishing ${ }^{[7-10]}$,

$$
\iota\left\{\begin{array}{c}
\text { Baer } *-\text { ring } \xrightarrow{\text { generators }} L \\
\text { Baer } *-\text { ring } \xrightarrow{\text { generators }} L \\
\downarrow \\
\downarrow \\
\downarrow
\end{array}\right\}
$$

## METHOD (II) - Establishing Factor

Taking the identity operator $\mathfrak{f}$ as factor in von Neumann algebras there exists 3 -categories for a unique decomposition in every commutative algebra ${ }^{[1,8,10-12]}$,

$$
\text { (D) }\left\{\begin{array}{c}
\mathrm{I}-\text { discrete, semi }- \text { finite, properly }- \text { infinite (over } \mathrm{P}-1 \text { projections } \rightarrow \text { finite) } \\
\text { II }- \text { continuous, semi }- \text { finite, finite } \\
\text { III }- \text { continuous, semi }- \text { finite, properly infinite }
\end{array}\right.
$$

Respect to the commutative form of $A W^{*}$-algebras, ( $D$ ) exists in a compact Hausdorff for every bounded *-graded von Neumann algebras, Borel measure $\beta$ can be found for generators $\eta$ such that for I,II,III norms in a compact set $\mathcal{C}$ for compact Hausdorff $\mathcal{C H}$ where power factors $\mathfrak{f}_{\delta}$ establishes over $\mu$ relating Araki-Wood factor over ${ }^{[1-3,11-14]}$,

SJIF Impact Factor 2022: 8.197| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)
EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 9 | September 2022<br>- Peer Reviewed Journal

$\left\{\begin{array}{c}I \rightarrow\left\{\begin{array}{c}I_{k} \text { for finite } k \\ I_{\infty}\end{array}\right. \\ I I \rightarrow\left\{\begin{array}{l}I I_{1} \\ I I_{\infty}\end{array}\right. \\ I I I \rightarrow\left\{\begin{array}{l}I I I_{0} \\ I I I_{\infty}\end{array} \forall \mathfrak{f}_{\delta} \exists 0<\delta<1\right.\end{array}\right.$

Suffice the commutation over the relation ${ }^{[1,5,7,8-10]}$,

$$
\left(\varphi \oplus \varphi^{0}\right)^{\prime}=\varphi^{\prime} \oplus\left(\varphi^{0}\right)^{\prime} \exists I, I I, I I I \in\left(\varphi, \varphi^{0}\right)
$$

Over the generic group ${ }^{[10,13,14]}$,

$$
\eta(\mathcal{G})\left\{\begin{array}{c}
\text { generators } \eta \\
\mathcal{G}_{+} \rightarrow \text { additive intigers } \\
\mathcal{G}_{-} \rightarrow \text { Borel } \beta \text { for compact Hausdorff } \mathcal{C H} \rightarrow \text { locally finite } \sigma-\operatorname{algebra} \text { via } \beta(\mathcal{C}) \lessdot \infty
\end{array}\right.
$$

## DISCUSSION

For the associated generators taken over the generic groups having two forms for the later suffice the Borel measurable set, there is a uniqueness and equivalence between $\mathrm{AW}^{*}$ generalization to $\mathrm{W}^{*}$ with $\mathrm{C}^{*}$ where for the categories $I, I I, I I I$ one gets a relative factor $f$ which with the affine parameter $\delta$ gives the commutative relations for the generic groups that are associated satisfies METHOD (II) in a nice way so as to suffice the earlier relations for the idempotent, rings, Baer, Rickart, weak operator topology in the sense to conclude left-annihilator, projections with the Baer*-ring capturing every parameters of AW* for the related involutions mapping from ring $R$ to opposite ring $R^{o p}$.

## REFERENCE

1. Dixmier, Dixmier, J. (2011, October 9). Von Neumann Algebras. North Holland.
2. J. (2011, October 9). Von Neumann Algebras. North Holland.
3. Christensen, E., Matematik, K. U. I. F. M. F. A. F., \& Københavns Universitet. Institut for Matematiske Fag. Afdelingen for Matematik. (2000). Finite Von Neumann Algebra Factors with Property Gamma. Københavns Universitet.
4. Bhattacharjee, Deep (2022): Establishing equivariant class [O] for hyperbolic groups. figshare. Preprint. https://doi.org/10.6084/m9.figshare.20445843.v1
5. Bhattacharjee, D. (2022am, May 10). Establishing equivalence among hypercomplex structures via Kodaira embedding theorem for nonsingular quintic 3-fold having positively closed (1,1)-form Kähler potential $12^{-1} \partial \partial^{*} \rho$. Research Square. https://doi.org/10.21203/rs.3.rs1635957/v1
6. Bhattacharjee, D., Roy, S. S., \& Behera, A. K. (2022, August 31). Relating Enrique surface with K3 and Kummer through involutions and double covers over finite automorphisms on Topological Euler-Poincaré characteristics over complex K3 with Kähler equivalence. Research Square. https://doi.org/10.21203/rs.3.rs-2011341/v1
7. Mortad, M. H. (2018, December). An Operator Theory Problem Book. World Scientific. https://doi.org/10.1142/10884
8. Eisenbud, D. (1995, March 30). Commutative Algebra: With a View Toward Algebraic Geometry. Springer.
9. Bhattacharjee, D. (2022an, August 16). Generalization of Quartic and Quintic Calabi - Yau Manifolds Fibered by Polarized K3 Surfaces. Research Square. https://doi.org/10.21203/rs.3.rs-1965255/v1
10. Bhattacharjee, D. (2022ao, June 13). Uniqueness in Poincaré-Birkhoff-Witt Theorem over Algebraic Equivalence .Authorea. https://doi.org/10.22541/au.165511635.53854231/v1
11. Chang, S., \& Weinberger, S. (2021, January 26). A Course on Surgery Theory: (AMS-211) (Annals of Mathematics Studies, 365). Princeton University Press.
12. Bhattacharjee, D. (2022ap, July 7). Generalized Poincaré Conjecture via Alexander trick over C-isomorphism extension to h-cobordism on inclusion maps with associated Kan-complex. Research Square. https://doi.org/10.21203/rs.3.rs-1830184/v1
13. Heunen, C., \& Reyes, M. L. (2014, August). Active lattices determine AW*-algebras. Journal of Mathematical Analysis and Applications, 416(1), 289-313. https://doi.org/10.1016/j.jmaa.2014.02.041
14. Saitô, K., \& Wright, J. D. M. (2015, January 11). On Defining AW*-algebras and Rickart C*-algebras. ArXiv:1501.02434v1 [Math.OA]. https://doi.org/10.48550/arXiv.1501.02434
