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ABSTRACT 

 In this paper, we introduce regular (1, 2)∗-generalized -closed sets and obtain the relationships among  some existing closed sets like 

(1, 2)∗-semi- closed, (1, 2)∗-- closed and (1, 2)∗--closed sets and their generalizations. Also we study some basic properties of (1, 2)∗-

rg-open sets. Further, we introduce (1, 2)∗-rg-neighbourhood and discuss some properties of (1, 2)∗-rg-neighbourhood. 
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1. INTRODUCTION 

The study of bitopological spaces was first intiated by Kelly [4] in 1963. By using the topological notions, 

namely, semi-open, -open and pre-open sets, many new bitopological sets are defined and studied by many 

topologists. In 2008, Ravi et al. [8] studied the notion of (1, 2)∗-sets in bitopological spaces. In 2004, Ravi and 

Thivagar [7] studied the concept of stronger from of (1, 2)∗-quatient mapping in bitopological spaces and 

introduced the concepts of (1, 2)∗-semi-open and (1, 2)∗--open sets in bitopological spaces. In 2010, K. 

Kayathri et al. [3] introduced and studied a new class of sets called regular (1, 2)∗-g-closed sets and used it to 

obtain a new class of functions called (1, 2)∗-rg-continuous, (1, 2)∗-R-map, almost (1, 2)∗-continuous and almost 

(1, 2)∗-rg-closed functions in bitopological spaces. In 2015, D. Sreeja and P. Juane Sinthya [11] introduced (1, 

2)∗-rgα-closed sets. Some of its basic properties are studied. In 2022, H. Kumar [5] introduced the concept of (1, 

2)∗--open sets and (1, 2)∗--neighbourhood and; studied their properties. Recently H. Kumar [6] introduced 

the concept of (1, 2)∗-generalized -closed sets and (1, 2)∗-g-neighbourhood and; investigated their properties. 

 
2. PRELIMINARIES 

Throughout the paper (X, 1, 2), (Y, σ1, σ2) and (Z, 1, 2) (or simply X, Y and Z) denote bitopological 

spaces. 

  

Definition 2.1. Let S be a subset of X. Then S is said to be 1,2-open [7] if S = A  B where A  1 and B  

2. The complement of a 1,2-open set is 1,2-closed.   

 

Definition 2.2 [7]. Let S be a subset of X. Then  

(i) the 1,2-closure of S, denoted by 1,2-cl(S), is defined as  {F : S   F and F is 1, 2-closed}; (ii) the 1,2-

interior of S, denoted by 1,2-int(S), is defined as  {F : F  S and F is 1,2-open}.  

 

Note 2.3 [7]. Notice that 1,2-open sets need not necessarily form a topology. 
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Definition 2.4. A subset A of a bitopological space (X, 1, 2) is called  

(i) regular ( 1 , 2 )
*-open  [7] if A =  1,2-int (1,2-cl((A)). 

(ii) (1 , 2 )
*
-semi-open [7] if A = 1,2-cl(1,2-int(A)), 

(iii) ( 1 , 2 )
*
--open  [7] if A  1,2-int (1,2-cl(1,2-int (A))). 

(iv) (1, 2)∗--open [5] if A  1,2 -int(1,2 -cl(1,2 -int)(A))  1,2 -cl(1,2 -int)(A)). 

 

The complement of a regular (1, 2)
*-open (resp. (1, 2)∗-semi-open, (1, 2)∗--open, (1, 2)∗--open) set is called 

regular (1 , 2)
*-closed (resp.  (1, 2)∗-semi-closed, (1, 2)∗--closed, (1, 2)∗--closed). 

 
The (1, 2)∗-semi-closure (resp. (1, 2)∗--closure, (1, 2)∗--closure) of a subset A of X is denoted by (1, 2)∗-s-
cl(A) (resp. (1, 2)∗--cl(A), (1, 2)∗--cl(A)), defined as the intersection of all (1, 2)∗-semi-closed. (resp. (1, 

2)∗--closed, (1, 2)∗--closed) sets containing A. 
 

The family of all regular (1 , 2)
*-open (resp. regular (1 , 2)

*-closed, (1, 2)∗-semi-open, (1, 2)∗--open, (1, 2)∗--
open, (1, 2)∗-semi-closed, (1, 2)∗--closed, (1, 2)∗--closed) sets in X is denoted by (1, 2)

*
-RO(X) (resp. (1, 

2)
*
-RC(X), (1, 2)∗-SO(X), (1, 2)∗-O(X), (1, 2)∗-O(X), (1, 2)∗-SC(X), (1, 2)∗-C(X), (1, 2)∗-C(X).  

 

Remark 2.5. It is evident that any 1,2-open set of X is an (1, 2)∗--open and each (1, 2)∗--open set of X is 

(1, 2)∗-semi-open but the converses are not true. 

 

Remark 2.6. We have the following implications for the properties of subsets [5]: 

 

regular ( 1 , 2 )
*-open    1, 2 -open    (1, 2)

*
--open   (1, 2)

*
-semi-open    (1, 2)

*
--open 

 

Where none of the implications is reversible. 

 

3. (1, 2)∗-GENERALIZED -CLOSED SETS IN BITOPOLOGICAL SPACES 

Definition 3.1. A subset A of a bitopological space (X, 1, 2) is called 

(i) (1, 2)
*
-generalized closed (briefly (1, 2)

*
-g-closed) [10] if 1,2-cl(A) ⊂ U whenever A  U and U is 1,2-

open in X. 

(ii) regular (1, 2)
*
- generalized closed (briefly (1, 2)

*
-rg-closed) [3] if 1,2-cl(A) ⊂ U whenever A  U and U  

(1, 2)
*
-RO(X). 

(iii) (1, 2)
*
-weakly closed (briefly (1, 2)

*
-w-closed) [2] if 1,2-cl(A) ⊂ U whenever A  U and U is (1, 2)∗-

semi-open in X. 

(iv) (1, 2)
*
-α-generalized closed (briefly (1, 2)

*
-αg-closed) [10] if (1, 2)

*
-α-cl(A)  U whenever A  U and U is 

1,2-open in X. 

(v) regular (1, 2)
*
-generalized α-closed (briefly (1, 2)

*
-rgα-closed) [11] if (1, 2)

*
-α-cl(A)  U whenever A  U 

and U  (1, 2)
*
-RO(X). 

(vi) (1, 2)
*
-generalized semi-closed (briefly (1, 2)

*
-gs-closed) [10] if (1, 2)

*
-s-cl(A)  U whenever A  U and U 

is 1,2-open in X. 

(vii) regular (1, 2)
*
-generalized semi-closed (briefly (1, 2)

*
-rgs-closed) [10] if (1, 2)

*
-s-cl(A)  U whenever A  

U and U  (1, 2)
*
-RO(X). 
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(viii) (1, 2)
*
-generalized -closed (briefly (1, 2)

*
-g-closed) [6] if (1, 2)

*
--cl(A)  U whenever A  U and U is 

1,2-open in X. 

(ix) regular (1, 2)
*
-generalized -closed (briefly (1, 2)

*
-rg-closed) if (1, 2)

*
--cl(A)  U whenever A  U and 

U  (1, 2)
*
-RO(X). 

 

The complement of a (1, 2)
*
-g-closed (resp. (1, 2)

*
-rg-closed, (1, 2)

*
-w-closed, (1, 2)

*
-αg-closed, (1, 2)

*
-rgα-

closed, (1, 2)
*
-gs-closed, (1, 2)

*
-rgs-closed, (1, 2)

*
-g-closed) set is called (1, 2)

*
-g-open (resp. (1, 2)

*
-rg-open, 

(1, 2)
*
-w-open, (1, 2)

*
-rgα-open, (1, 2)

*
-αg-open, (1, 2)

*
-gs-open, (1, 2)

*
-rgs-open, (1, 2)

*
-g-open). 

 
We denote the set of all (1, 2)

*
-rg-closed sets in (X, 1, 2) by (1, 2)

*
-rg-C(X). 

 

Theorem 3.2. Every 1,2-closed set is rgη-closed.  

Proof. Let A be any 1,2-closed set in (X, 1, 2) and A  U, where U  (1, 2)
*
-RO(X). So (1, 2)

*
-cl(A) = A . 

Since every 1,2-closed set is (1, 2)
*
-η-closed, so (1, 2)

*
-η-cl(A)  (1, 2)

*
-cl(A) = A. Therefore, (1, 2)

*
-η-cl(A) 

 A  U. Hence A is (1, 2)
*
-rgη-closed set. 

 

Theorem 3.3. Every (1, 2)
*
-g-closed set is (1, 2)

*
-rgη-closed.  

Proof. Let A be any (1, 2)
*
-g-closed set in (X, 1, 2) then (1, 2)

*
-cl(A)  U whenever A  U, where U  (1, 

2)
*
-RO(X), since every regular (1 , 2)

*-open set is 1,2-open. So (1, 2)
*
-η-cl(A)   (1, 2)

*
-cl(A)  U. Therefore 

(1, 2)
*
-η-cl(A)  U.  Hence A is (1, 2)

*
-rgη-closed set.  

 

Theorem 3.4. Every (1, 2)
*
-rg-closed set is (1, 2)

*
-rgη-closed.  

Proof. Let A be any (1, 2)
*
-g-closed set in (X, 1, 2) then (1, 2)

*
-cl(A)  U whenever A  U, where U  (1, 

2)
*
-RO(X). So (1, 2)

*
-η-cl(A)   (1, 2)

*
-cl(A)  U. Therefore (1, 2)

*
-η-cl(A)  U.  Hence A is (1, 2)

*
-rgη-

closed set.   

 

Theorem 3.5. Every (1, 2)
*
-α-closed set is (1, 2)

*
-rgη-closed.  

Proof. Let A be any (1, 2)
*
-α-closed set in (X, 1, 2) and A  U, where U  (1, 2)

*
-RO(X). Since every (1, 

2)
*
-α-closed set is (1, 2)

*
-η-closed, so (1, 2)

*
-η-cl(A)  (1, 2)

*
-α-cl(A) = A. Therefore (1, 2)

*
-η-cl(A)  A  U. 

Hence A is (1, 2)
*
-rgη-closed set.  

 

Theorem 3.6. Every (1, 2)
*
-αg-closed set is (1, 2)

*
-rgη-closed.  

Proof. Let A be any (1, 2)
*
-g-closed set in (X, 1, 2) then (1, 2)

*
--cl(A)  U whenever A  U, where U  

(1, 2)
*
-RO(X), since every regular (1 , 2 )

*-open set is 1,2-open. Given that A is (1, 2)
*
-g-closed set such that 

(1, 2)
*
--cl(A)  U. But we have (1, 2)

*
-η-cl(A)  (1, 2)

*
--cl(A)  U. Therefore (1, 2)

*
-η-cl(A)  U. Hence A 

is (1, 2)
*
-rgη-closed set.  

 

Theorem 3.7. Every (1, 2)
*
-rgα-closed set is (1, 2)

*
-rgη-closed.  

Proof. Let A be any (1, 2)
*
-g-closed set in (X, 1, 2) then (1, 2)

*
--cl(A)  U whenever A  U, where U  

(1, 2)
*
-RO(X). Given that A is (1, 2)

*
-g-closed set such that (1, 2)

*
--cl(A)  U. But we have (1, 2)

*
-η-cl(A) 

 (1, 2)
*
--cl(A)  U. Therefore (1, 2)

*
-η-cl(A)  U. Hence A is (1, 2)

*
-rgη-closed set.  

Theorem 3.8. Every (1, 2)
*
-semi-closed set is (1, 2)

*
-rgη-closed.  
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Proof. Let A be any (1, 2)
*
-semi-closed set in (X, 1, 2) and A  U, where U  (1, 2)

*
-RO(X). Since every (1, 

2)
*
-semi-closed set is (1, 2)

*
-η-closed, so (1, 2)

*
-η-cl(A)  (1, 2)

*
-s-cl(A) = A. Therefore (1, 2)

*
-η-cl(A)  A  

U. Hence A is (1, 2)
*
-rgη-closed set. 

 

Theorem 3.9. Every (1, 2)
*
-gs-closed set is (1, 2)

*
-rgη-closed.  

Proof. Let A be any (1, 2)
*
-gs-closed set in (X, 1, 2) then (1, 2)

*
-s-cl(A)  U whenever A  U, where U  

(1, 2)
*
-RO(X), since every regular ( 1 , 2 )

*-open set is 1,2-open. Given that A is (1, 2)
*
-gs-closed set such that 

(1, 2)
*
-s-cl(A)  U. But we have (1, 2)

*
-η-cl(A)  (1, 2)

*
-s-cl(A)  U. Therefore (1, 2)

*
-η-cl(A)  U. Hence A 

is (1, 2)
*
-rgη-closed set.  

 

Theorem 3.10. Every (1, 2)
*
-rgs-closed set is (1, 2)

*
-rgη-closed.  

Proof. Let A be any (1, 2)
*
-rgs-closed set in (X, 1, 2) then (1, 2)

*
-s-cl(A)  U whenever A  U, where U  

(1, 2)
*
-RO(X). Given that A is (1, 2)

*
-gs-closed set such that (1, 2)

*
-s-cl(A)  U. But we have (1, 2)

*
-η-cl(A)  

(1, 2)
*
-s-cl(A)  U. Therefore (1, 2)

*
-η-cl(A)  U. Hence A is (1, 2)

*
-rgη-closed set.  

  

Theorem 3.11. Every (1, 2)
*
-η-closed set is (1, 2)

*
-rgη-closed.  

Proof. Let A be any (1, 2)
*
-η-closed set in (X, 1, 2) and A  U, where U  (1, 2)

*
-RO(X). Since A is (1, 2)

*
-

η-closed. Therefore (1, 2)
*
-η-cl(A) = A  U. Hence A is (1, 2)

*
-rgη-closed set.  

 

Theorem 3.12. Every (1, 2)
*
-gη-closed set is (1, 2)

*
-rgη-closed.  

Proof. Let A be any (1, 2)
*
-g-closed set in (X, 1, 2) then (1, 2)

*
--cl(A)  U whenever A  U, where U  

(1, 2)
*
-RO(X), since every regular ( 1 , 2 )

*-open set is 1,2-open. Given that A is (1, 2)
*
-g-closed set such that 

(1, 2)
*
--cl(A)  U. Therefore (1, 2)

*
-η-cl(A)  U. Hence A is (1, 2)

*
-rgη-closed set.  

 

Theorem 3.13. Every (1, 2)
*
-w-closed set is (1, 2)

*
-rgη-closed.  

Proof. Let A be any (1, 2)
*
-w-closed set in (X, 1, 2) then (1, 2)

*
-cl(A)  U whenever A  U, where U  (1, 

2)
*
-RO(X), since every regular ( 1 , 2 )

*-open set is (1 , 2 )
*
-semi-open. So (1, 2)

*
-η-cl(A)  (1, 2)

*
-cl(A)  U. 

Therefore (1, 2)
*
-η-cl(A)  U.  Hence A is (1, 2)

*
-rgη-closed set. 

 

Remark 3.14. We have the following implications for the properties of subsets: 

 

(1, 2)
*
-g-closed         (1, 2)

*
-rg-closed          1,2-closed                            (1, 2)

*
--closed 

                                                                                                    

 

 

 (1, 2)
*
-w-closed                                      (1, 2)

*
-rgη-closed                           (1, 2)

*
-s-closed 

 

 (1, 2)
*
-rgs-closed                                                                                           (1, 2)

*
--closed   

 

(1, 2)
*
-gs-closed               (1, 2)

*
-αg-closed           (1, 2)

*
-rgα-closed         (1, 2)

*
-g-closed             
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Where none of the implications is reversible as can be seen from the following examples: 

Example 3.15. Let X = {a, b, c, d} with 1 = {, X, {a}, {b}, {a, b}, {b, c, d}} and 2 = {, X, {c}, {a, c, d}}. 

Then 

(i) 1,2-closed sets : , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(ii) (1, 2)
*
-g-closed sets : , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(iii) (1, 2)
*
-rg-closed sets : , X, {a}, {b}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, 

{b, c, d}. 

(iv) (1, 2)
*
--closed sets : , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(v) (1, 2)
*
-αg-closed sets : , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(vi) (1, 2)
*
-rgα-closed sets : , X, {a}, {b}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, 

d}, {b, c, d}. 

(vii) (1, 2)
*
-semi-closed sets : , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, 

d}. 

(viii) (1, 2)
*
-gs-closed sets : , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(ix) (1, 2)
*
-rgs-closed sets : , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, 

d}, {a, c, d}, {b, c, d}. 

(x) (1, 2)
*
--closed sets : , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xi) (1, 2)
*
-g-closed sets : , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(xii) (1, 2)
*
-rg-closed sets : , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, 

b, d}, {a, c, d}, {b, c, d}. 

(xiii) (1, 2)
*
-w-closed sets : , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.  

 

Example 3.16. Let X = {a, b, c} with 1 = {, X, {b}} and 2 = {, X, {c}}. Then 

(i) 1,2-closed sets : , X, {a}, {a, b}, {a, c}. 

(ii) (1, 2)
*
-g-closed sets : , X, {a}, {a, b}, {a, c}. 

(iii) (1, 2)
*
-rg-closed sets : , X, {a}, {a, b}, {a, c}, {b, c}. 

(iv) (1, 2)
*
--closed sets : , X, {a}, {a, b}, {a, c}. 

(v) (1, 2)
*
-αg-closed sets : , X, {a}, {a, b}, {a, c}. 

(vi) (1, 2)
*
-rgα-closed sets : , X, {a}, {a, b}, {a, c}, {b, c}. 

(vii) (1, 2)
*
-semi-closed sets : , X, {a}, {b}, {c}, {a, b}, {a, c}. 

(viii) (1, 2)
*
-gs-closed sets : , X, {a}, {b}, {c}, {a, b}, {a, c}. 

(ix) (1, 2)
*
-rgs-closed sets : , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}. 

(x) (1, 2)
*
--closed sets : , X, {a}, {b}, {c}, {a, b}, {a, c}. 

(xi) (1, 2)
*
-g-closed sets : , X, {a}, {b}, {c}, {a, b}, {a, c}. 

(xii) (1, 2)
*
-rg-closed sets : , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}. 

(xiii) (1, 2)
*
-w-closed sets : , X, {a}, {a, b}, {a, c}. 

 

Example 3.17. Let X = {a, b, c, d} with 1 = {, X, {a}} and 2 = {, X, {b}, {a, b, c}}. Then 

(i) 1,2-closed sets : , X, {d}, {c, d}, {a, c, d}, {b, c, d}. 
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(ii) (1, 2)
*
-g-closed sets : , X, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(iii) (1, 2)
*
-rg-closed sets : , X, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, 

d}, {b, c, d}. 

(iv) (1, 2)
*
--closed sets : , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}. 

(v) (1, 2)
*
-αg-closed sets : , X, {c}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

(vi) (1, 2)
*
-rgα-closed sets : , X, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, 

d}, {b, c, d}. 

(vii) (1, 2)
*
-semi-closed sets : , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}. 

(viii) (1, 2)
*
-gs-closed sets : , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, 

c, d}. 

(ix) (1, 2)
*
-rgs-closed sets : , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, 

d}, {a, c, d}, {b, c, d}. 

(x) (1, 2)
*
--closed sets : , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}. 

(xi) (1, 2)
*
-g-closed sets : , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, 

c, d}. 

(xii) (1, 2)
*
-rg-closed sets : , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, 

b, d}, {a, c, d}, {b, c, d}. 

(xiii) (1, 2)
*
-w-closed sets : , X, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}. 

 

Example 3.18. Let X = {a, b, c, d} with 1 = {, X, {a}, {b}, {a, b}, {a, b, c}} and 2 = {, X, {a, b, d}}. Then 

(i) 1,2-closed sets : , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}. 

(ii) (1, 2)
*
-g-closed sets : , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}. 

(iii) (1, 2)
*
-rg-closed sets : , X, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, 

d}, {b, c, d}. 

(iv) (1, 2)
*
--closed sets : , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}. 

(v) (1, 2)
*
-αg-closed sets : , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}. 

(vi) (1, 2)
*
-rgα-closed sets : , X, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, 

d}, {b, c, d}. 

(vii) (1, 2)
*
-semi-closed sets : , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}. 

(viii) (1, 2)
*
-gs-closed sets : , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}. 

(ix) (1, 2)
*
-rgs-closed sets : , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, 

d}, {a, c, d}, {b, c, d}. 

(x) (1, 2)
*
--closed sets : , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, 

d}. 

(xi) (1, 2)
*
-g-closed sets : , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, 

d}. 

(xii) (1, 2)
*
-rg-closed sets : , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, 

b, d}, {a, c, d}, {b, c, d}. 

(xiii) (1, 2)
*
-w-closed sets : , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}.  

 

4. CHARACTERIZATIONS OF (1, 2)∗-GENERALIZED -CLOSED SETS 

Theorem 4.1. The union of two (1, 2)
*
-rg-closed subsets of (X, 1, 2) is also (1, 2)

*
-rg-closed subset of (X, 

1, 2). 
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Proof. Assume that A and B are (1, 2)
*
-rg-closed set in (X, 1, 2). Let U be regular (1, 2)*-open set in (X, 

1, 2) such that A  B  U, then A  U and B  U. Since A and B are (1, 2)
*
-rg-closed such that (1, 2)

*
--

cl(A)  U and (1, 2)
*
--cl(B)  U. Hence (1, 2)

*
--cl(A  B) = (1, 2)

*
--cl(A)  (1, 2)

*
--cl(B)  U. That is 

(1, 2)
*
--cl(A  B)  U. Therefore A  B is (1, 2)

*
-rg-closed set in (X, 1, 2). 

 

Theorem 4.2. The intersection of two (1, 2)
*
-rg-closed-sets in (X, 1, 2) is also a (1, 2)

*
-rg-closed set in (X, 

1, 2). 

Proof. Easy to proof. 

 

Theorem 4.3. If a subset A is (1, 2)
*
-rg-closed, then (1, 2)

*
--cl(A)  A does not contain any non-empty 

regular (1, 2)
*
-closed set. 

Proof. Suppose that A is (1, 2)
*
-rg-closed. Let F be a regular (1, 2)∗-closed subset of (1, 2)

*
--cl(A)  A. Then 

F  [(1, 2)
*
--cl(A)  (X  A)] and so A  [X  F]. But A is (1, 2)

*
-rg-closed. Therefore (1, 2)

*
--cl(A)  [X 

 F]. Consequently, F  [X  (1, 2)
*
--cl(A)]. We already have F  (1, 2)

*
--cl(A). Hence F  [(1, 2)

*
--cl(A) 

 X  (1, 2)
*
--cl(A)] = . Thus F = . Therefore (1, 2)

*
--cl(A)  A contains no non-empty regular (1, 2)∗-

closed set. 

 

Example 4.4. The converse of Theorem 4.3 is not true.  

Refer to Example 3.18. Let A = {a, b, c}. We have that (1, 2)
*
--cl(A)  A = X  {a, b, c} = {d} does not 

contain any non-empty regular (1, 2)∗ -closed set. However, A is (1, 2)
*
-rg-closed in X. 

  

Theorem 4.5. Let A be (1, 2)∗ -rg-closed set. Then A is regular (1, 2)∗ -closed if and only if [(1, 2)
*
-cl((1, 2)

*
-

int(A))   A] is regular (1, 2)∗-closed.  

Proof. Let A be a (1, 2)∗ -rg-closed. If A is regular (1, 2)∗ -closed, then [(1, 2)
*
-cl((1, 2)

*
-int(A))  A] = . We 

know  is always regular (1, 2)∗-closed. Therefore [(1, 2)∗-cl((1, 2)∗-int(A))  A] is regular (1, 2)∗-closed.  

Conversely, suppose that [(1, 2)∗-cl((1, 2)∗-int(A))  A] is regular (1, 2)∗-closed. Since A is (1, 2)∗-rg-closed, 

[(1, 2)∗-cl(A)  A] contains the regular (1, 2)∗-closed set [(1, 2)∗-cl((1, 2)∗-int(A))  A]. By Theorem 4.3, [(1, 

2)∗-cl((1, 2)∗-int(A)) \ A] = . Hence (1, 2)∗-cl((1, 2)∗-int(A)) = A. Therefore A is regular (1, 2)∗-closed.  

Remark 4.6. The converse of Theorem 4.4 is not true as per the following example. 

 

Example 4.7. Let X = {a, b, c, d, e} with 1 = {, X, {a, b}, {a, b, c, d}} and 2 = {, X, {c, d}, {a, b, c, d}}. If 

we consider A = {a, c}, then (1, 2)
*
--cl(A)  A = X  {a, c} = {b, d, e} does not contain any non-empty 

regular (1, 2)∗-closed set. However A is (1, 2)
*
-rg-closed. 

Theorem 4.8. For an element x  (X, 1, 2), the set (X, 1, 2)  {x} is (1, 2)
*
-rg-closed or regular (1, 2)∗-

open. 

Proof. Suppose (X, 1, 2)  {x} is not regular (1, 2)∗-open set. Then (X, 1, 2) is the only regular (1, 2)∗-

open set containing (X, 1, 2)  {x}. This implies (1, 2)
*
--cl((X, 1, 2)  {x})  (X, 1, 2). Hence (X, 1, 

2)  {x} is (1, 2)
*
-rg-closed set in (X, 1, 2). 
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Theorem 4.9. Let A be a (1, 2)
*
-rg-closed subset of X. If A  B  (1, 2)

*
--cl(A), then B is also (1, 2)

*
-rg-

closed in X. 

Proof. Let U  (1, 2)
*
-rg-O(X) with B  U. Then A  U. Since A is (1, 2)

*
-rg-closed, (1, 2)

*
--cl(A)  U. 

Also, since B  (1, 2)
*
--cl(A), (1, 2)

*
--cl(B)  (1, 2)

*
--cl(A)  U. Hence B is also (1, 2)

*
-rg-closed subset 

of X. 

 

Remark 4.10. The converse of the Theorem 4.9 need not be true in general. Consider the bitopological space 

(X, 1, 2) where X = {a, b, c, d, e} with topology 1 = {, {a, b}, {a, b, c, d}, X}, 2 = {, {c, d}, {a, b, c, d}, 

X}, Let A = {b} and B = {b, c}. Then A and B are (1, 2)
*
-rg-closed sets in (X, 1, 2) but A  B is not subset 

in (1, 2)
*
--cl(A) = {a, b}. 

 

Theorem 4.11. Let A be a (1, 2)
*
-rg-closed in (X, 1, 2). Then A is (1, 2)

*
- -closed if and only if (1, 2)

*
--

cl(A)  A is a regular (1, 2)
*
-open.  

Proof. Suppose A is a (1, 2)
*
--closed in (X, 1, 2). Then (1, 2)

*
- -cl(A) = A and so (1, 2)

*
- cl(A)  A = , 

which is regular (1, 2)
*
-open in (X, 1, 2).  

 

Conversely, suppose (1, 2)
*
--cl(A)  A is a regular (1, 2)

*
-open set in (X, 1, 2). Since A is (1, 2)

*
-rg-

closed, by Theorem 4.3 (1, 2)
*
--cl(A)  A does not contain any nonempty regular (1, 2)

*
-open in (X, 1, 2). 

Then (1, 2)
*
--cl(A)  A = . Hence A is (1, 2)*--closed set in (X, 1, 2). 

 

Theorem 4.12. If A is regular (1, 2)
*
-open and (1, 2)

*
-rg-closed, then A is (1, 2)

*
-rg-closed set in (X, 1, 2). 

Proof. Let U be any regular (1, 2)
*
-open set in (X, 1, 2) such that A  U. Since A is regular (1, 2)

*
-open and 

(1, 2)
*
-rg-closed, we have (1, 2)

*
--cl(A)  A. Then (1, 2)

*
--cl(A)  A  U. Hence A is (1, 2)

*
rg-closed set 

in (X, 1, 2). 

 

Theorem 4.13. If a subset A of bitopological space (X, 1, 2) is both regular (1, 2)
*
-open and (1, 2)

*
-rg-

closed, then it is (1, 2)
*
--closed. 

Proof. Suppose a subset A of bitopological space (X, 1, 2) is both regular (1, 2)
*
-open and (1, 2)

*
-rg-closed. 

Now A  A. Then (1, 2)
*
--cl(A)  A. Hence A is (1, 2)*--closed. 

 

Corollary 4.14. Let A be regular (1, 2)
*
-open and (1, 2)

*
-rg-closed subset in (X, 1, 2). Suppose that F is (1, 

2)
*
--closed set in (X, 1, 2). Then A  F is an (1, 2)

*
-rg-closed set in (X, 1, 2).  

Proof. Let A be a regular (1, 2)
*
-open and (1, 2)

*
-rg-closed subset in (X, 1, 2) and F be closed. By 

Theorem 4.13, A is (1, 2)
*
--closed. So A  F is a (1, 2)

*
--closed and hence A  F is (1, 2)

*
-rg-closed set in 

(X, 1, 2). 

Theorem 4.15 [6]. If A is an open and S is (1, 2)
*
--open in bitopological space (X, 1, 2), then A  S is (1, 

2)
*
--open in (X, 1, 2). 

 

Theorem 4.16. If A is both open and (1, 2)
*
-g-closed set in (X, 1, 2), then it is (1, 2)

*
-rg-closed set in (X, 

1, 2). 
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Proof. Let A be an open and (1, 2)
*
-g-closed set in (X, 1, 2). Let A  U and let U be a regular (1, 2)

*
-open set 

in (X, 1, 2). Now A  A. By hypothesis (1, 2)
*
--cl(A)  A. That is (1, 2)

*
--cl(A)  U. Thus A is (1, 2)

*
-

rg-closed in (X, 1, 2). 

 

5. (1, 2)
*
-RG-OPEN SETS AND (1, 2)∗-RG-NEIGHBORHOOD 

In this section, we introduce (1, 2)
*
-rg-open sets in bitopological spaces and study some basic properties of (1, 

2)
*
-rg-open sets. Also, we introduce (1, 2)

*
-rg-neighborhood (shortly (1, 2)

*
-g-nbhd in bitopological spaces 

by using the notion of (1, 2)
*
-rg-open sets. We prove that every nbhd of x in (X, 1, 2) is (1, 2)

*
-rg-nbhd of 

x but not conversely. 

 

Definition 5.1. A subset A in (X, 1, 2) is called regular (1, 2)
*
-generalized -open (briefly, (1, 2)

*
-rg-open) 

in (X, 1, 2) if A
c
 is (1, 2)

*
-rg-closed in (X, 1, 2). We denote the family of all (1, 2)

*
-rg-open sets in X by 

(1, 2)
*
-rg-O(X). 

 

Theorem 5.2. A set A is (1, 2)
*
-rg-open if and only if the following condition holds:  

 

                F  (1, 2)
*
--int(A) whenever F is regular (1, 2)∗-closed and F  A. 

  

Proof. Suppose the condition holds. Put [X  A] = B. Suppose that B  U where U  (1, 2)
*
-R-O(X). Now X  

A  U implies F = [X  U]  A and F is regular (1, 2)∗ -closed, which implies F  (1, 2)
*
--int(A). Also F  

(1, 2)
*
--int(A) implies [X  (1, 2)

*
--int(A)]  [X  F] = U. This implies [X  ((1, 2)

*
--int(X  B))]  U. 

Therefore [X  ((1, 2)
*
--int(X  B))]  U or equivalently (1, 2)

*
--cl(B)  U. Thus B is (1, 2)

*
-rg-closed. 

Hence A is (1, 2)
*
-rg-open. 

  

Conversely, suppose that A is (1, 2)∗-rg-open, F  A and F is regular (1, 2)∗-closed. Then [X  F] is regular (1, 

2)∗-open. Then (X  A)  (X  F). Hence (1, 2)
*
--cl(X   A)  (X  F) because (X  A) is (1, 2)∗-rg-closed. 

Therefore F  (X  (1, 2)
*
--cl(X  A)) = (1, 2)

*
--int(A). 

   

Definition 5.3. Let (X, 1, 2) be a bitopological space and let x  (X, 1, 2). A subset N of (X, 1, 2) is said 

to be a (1, 2)
*
-rg-nbhd of x iff there exists a (1, 2)

*
-rg-open set G such that x  G  N.  

Definition 5.4. A subset N of a bitopological space (X, 1, 2), is called a (1, 2)
*
-rg-nbhd of A  (X, 1, 2) 

iff there exists a (1, 2)
*
-rg-open set G such that A  G  N.  

Theorem 5.5. Every nbhd N of x  (X, 1, 2) is a (1, 2)
*
-rg-nbhd of (X, 1, 2).  

Proof. Let N be a nbhd of point x  (X, 1, 2). To prove that N is a (1, 2)
*
-rg-nbhd of x. By definition of 

nbhd, there exists an open set G such that x  G  N. As every open set is (1, 2)
*
-rg-open set G such that x  

G  N. Hence N is (1, 2)
*
-rg-nbhd of x. 

Remark 5.6. In general, a (1, 2)
*
-rg-nbhd N of x  (X, 1, 2) need not be a nbhd of x in (X, 1, 2), as seen 

from the following example.  

Example 5.7. Let X = {a, b, c, d} with topology 1 = {, {a}, {b}, {a, b}, {a, b, c}, X} and 2 = {, {a, b, d}, 

X} Then (1, 2)
*
-rg-O(X) = {, X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, 
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b, d}, {a, c, d}, {b, c, d}}. The set {b, c} is (1, 2)
*
-rg-nbhd of the point b, there exists an (1, 2)

*
-rg-open set 

{b} is such that b  {b}  {b, c}. However, the set {b, c} is not a nbhd of the point b, since no open set G 

exists such that b  G  {a, c}.  

Theorem 5.8. If a subset N of a space (X, 1, 2) is (1, 2)
*
-rg-open, then N is a (1, 2)

*
-rg-nbhd of each of its 

points.  

Proof. Suppose N is (1, 2)
*
-rg-open. Let x ∈ N. We claim that N is (1, 2)

*
-rg-nbhd of x. For N is a (1, 2)

*
-

rg-open set such that x  N  N. Since x is an arbitrary point of N, it follows that N is a (1, 2)
*
-rg-nbhd of 

each of its points.  

 

Definition 5.9. Let x be a point in a space (X, 1, 2). The set of all (1, 2)
*
-rg-nbhd of x is called the (1, 2)

*
-

rg-nbhd system at x, and is denoted by (1, 2)
*
-rg-N(x). 

  

Theorem 5.10. Let (X, 1, 2) be a bitopological space and for each x  (X, 1, 2). Let (1, 2)
*
- rg-N(x) be 

the collection of all (1, 2)
*
-rg-nbhds of x. Then we have the following results.  

(i) ˅ x  (X, 1, 2), (1, 2)
*
-rg-N(x)  .  

(ii) N  (1, 2)
*
-rg-N(x) ⇒ x N.  

(iii) N  (1, 2)
*
-rg-N(x), M  N ⇒ M  (1, 2)

*
-rg-N(x).  

(iv) N  (1, 2)
*
-rg-N(x), M  (1, 2)

*
-rg-N(x) ⇒ N  M  (1, 2)

*
-rg-N(x).  

(v) N  (1, 2)
*
-rg-N(x) ⇒ there exists M  (1, 2)

*
-rg-N(x) such that M  N and M  (1, 2)

*
-rg-N(y) for 

every y  M. 

  

Proof. (i) Since (X, 1, 2) is a (1, 2)
*
-rg-open set, it is a (1, 2)

*
-rg-nbhd of every x  (X, 1, 2). Hence 

there exists at least one (1, 2)
*
-rg-nbhd (namely - (X, 1, 2)) for each x  (X, 1, 2). Hence(1, 2)

*
-rg-N(x) 

=  for every x  (X, 1, 2).  

(ii) If N  (1, 2)
*
-rg-N(x), then N is a (1, 2)

*
-rg-nbhd of x. So by definition of (1, 2)

*
-rg-nbhd, x  N.  

(iii) Let N  (1, 2)
*
-rg-N(x) and M  N. Then there is a (1, 2)

*
-rg-open set G such that x  G  N. Since N 

 M, x  G  M and so M is (1, 2)
*
-rg-nbhd of x. Hence M  (1, 2)

*
-rg-N (x).  

(iv) Let N  (1, 2)
*
-rg-N(x) and M  (1, 2)

*
-rg-N(x). Then by definition of (1, 2)

*
-rg-nbhd. Hence x  G1 

 G2  N  M  (1). Since G1  G2 is a (1, 2)
*
-rg-open set, (being the intersection of two (1, 2)

*
-rg-open 

sets), it follows from (1) that N  M is a (1, 2)
*
-rg-nbhd of x. Hence N  M  (1, 2)

*
-rg-N(x).  

(v) If N  (1, 2)
*
-rg-N(x), then there exists a (1, 2)

*
-rg-open set M such that x  M  N. Since M is a (1, 2)

*
-

rg-open set, it is (1, 2)
*
-rg-nbhd of each of its points. Therefore M  (1, 2)

*
-rg-N(y) for every y M. 

6. CONCLUSION 

In this paper, we introduce regular (1, 2)∗-generalized -closed sets and obtain the relationships among  some 

existing closed sets like (1, 2)∗-semi- closed, (1, 2)∗-- closed and (1, 2)∗-- closed sets and their 

generalizations. Also we study some basic properties of (1, 2)∗-rg-open sets. Further, we introduce (1, 2)∗-rg-

neighbourhood and discuss some properties of (1, 2)∗-rg-neighbourhood. The regular (1, 2)∗-generalized -

closed sets can be used to derive a new decomposition of unity, closed map and open map, homeomorphism, 
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closure and interior and new separation axioms. This idea can be extended to ordered topological and fuzzy 

topological spaces. 
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