SJIF Impact Factor 2022: 8.197| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016
ISSN: 2455-7838(Online)
EPRA International Journal of Research and Development (IJRD)
Volume: 7 | Issue: 10 | October 2022

- Peer Reviewed Journal

REGULAR (1, 2)*-GENERALIZED $\boldsymbol{\eta}$-CLOSED SETS IN BITOPOLOGY

Hamant Kumar
Department of Mathematics, Veerangana Avantibai Government Degree College, Atrauli-Aligarh, U. P. (India)

Abstract

In this paper, we introduce regular (1,2)*-generalized η-closed sets and obtain the relationships among some existing closed sets like $(1,2)^{*}$-semi- closed, $(1,2)^{*}-\alpha$ - closed and $(1,2)^{*}-\eta$-closed sets and their generalizations. Also we study some basic properties of $(1,2)^{*}$ rg η-open sets. Further, we introduce (1,2)*-rg η-neighbourhood and discuss some properties of (1,2)*-rg η-neighbourhood.

KEYWORDS : $(1,2)^{*}-\eta$-open, $(1,2)^{*}$-g η-closed, $(1,2)^{*}$-rg η-closed sets; (1, 2)*-rg η-neighbourhood

1. INTRODUCTION

The study of bitopological spaces was first intiated by Kelly [4] in 1963. By using the topological notions, namely, semi-open, α-open and pre-open sets, many new bitopological sets are defined and studied by many topologists. In 2008, Ravi et al. [8] studied the notion of (1, 2)*-sets in bitopological spaces. In 2004, Ravi and Thivagar [7] studied the concept of stronger from of (1, 2)*-quatient mapping in bitopological spaces and introduced the concepts of $(1,2)^{*}$-semi-open and (1, 2)*- α-open sets in bitopological spaces. In 2010, K. Kayathri et al. [3] introduced and studied a new class of sets called regular (1, 2)*-g-closed sets and used it to obtain a new class of functions called (1, 2)*-rg-continuous, (1, 2)*-R-map, almost (1,2$)^{*}$-continuous and almost $(1,2)^{*}$-rg-closed functions in bitopological spaces. In 2015, D. Sreeja and P. Juane Sinthya [11] introduced (1, 2)*-rg α-closed sets. Some of its basic properties are studied. In 2022, H. Kumar [5] introduced the concept of (1, $2)^{*}-\eta$-open sets and (1, 2)*- η-neighbourhood and; studied their properties. Recently H. Kumar [6] introduced the concept of $(1,2)^{*}$-generalized η-closed sets and $(1,2)^{*}$-g η-neighbourhood and; investigated their properties.

2. PRELIMINARIES

Throughout the paper (X, $\left.\mathfrak{I}_{1}, \mathfrak{I}_{2}\right),\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ and $\left(\mathrm{Z}, \wp_{1}, \wp_{2}\right)$ (or simply X, Y and Z) denote bitopological spaces.

Definition 2.1. Let S be a subset of X. Then S is said to be $\mathfrak{I}_{1,2}$-open [7] if $S=A \cup B$ where $A \in \mathfrak{I}_{1}$ and $B \in$ \mathfrak{I}_{2}. The complement of a $\mathfrak{I}_{1,2}$-open set is $\mathfrak{I}_{1,2}$-closed.

Definition 2.2 [7]. Let S be a subset of X. Then
(i) the $\mathfrak{I}_{1,2}$-closure of S, denoted by $\mathfrak{I}_{1,2}$-cl(S), is defined as $\cap\left\{\mathrm{F}: \mathrm{S} \subset \mathrm{F}\right.$ and F is $\mathfrak{I}_{1,2}$-closed $\}$; (ii) the $\mathfrak{I}_{1,2}{ }^{-}$ interior of S, denoted by $\mathfrak{I}_{1,2}-\operatorname{int}(S)$, is defined as $\cup\left\{F: F \subset S\right.$ and F is $\mathfrak{J}_{1,2}$-open $\}$.

Note 2.3 [7]. Notice that $\mathfrak{I}_{1,2}$-open sets need not necessarily form a topology.

Definition 2.4. A subset A of a bitopological space ($\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}$) is called
(i) regular (1,2)*-open [7] if $\mathrm{A}=\mathfrak{I}_{1,2}$-int $\left(\mathfrak{I}_{1,2}-\mathrm{cl}((\mathrm{A}))\right.$.
(ii) $(1,2)^{*}$-semi-open [7] if $\mathrm{A}=\mathfrak{I}_{1,2}-\operatorname{cl}\left(\mathfrak{I}_{1,2}-\operatorname{int}(\mathrm{A})\right)$,
(iii) $(\mathbf{1 , 2})^{*}$ - $\boldsymbol{\alpha}$-open [7] if $\mathrm{A} \subset \mathfrak{J}_{1,2}-\operatorname{int}\left(\mathfrak{I}_{1,2}-\mathrm{cl}\left(\mathfrak{J}_{1,2}-\operatorname{int}(\mathrm{A})\right)\right)$.
(iv) $(\mathbf{1}, \mathbf{2})^{*}-\boldsymbol{\eta}-$ open $[5]$ if $\left.\mathrm{A} \subset \mathfrak{J}_{1,2}-\operatorname{int}\left(\mathfrak{I}_{1,2}-\operatorname{cl}\left(\mathfrak{J}_{1,2}-\operatorname{int}\right)(\mathrm{A})\right) \cup \mathfrak{I}_{1,2}-\operatorname{cl}\left(\mathfrak{J}_{1,2}-\mathrm{int}\right)(\mathrm{A})\right)$.

The complement of a regular (1,2)*-open (resp. (1, 2)*-semi-open, (1, 2)*- α-open, $(1,2)^{*}$ - η-open) set is called regular (1, 2) ${ }^{*}$-closed (resp. (1, 2)*-semi-closed, (1, 2)*- α-closed, (1, 2)*- η-closed).

The (1, 2)*-semi-closure (resp. (1, 2)*- α-closure, (1, 2)*- η-closure) of a subset A of X is denoted by (1, 2)*-s$\operatorname{cl}(\mathrm{A})\left(\right.$ resp. (1, 2)*- $\left.\alpha-\operatorname{cl}(\mathrm{A}),(\mathbf{1 , 2})^{*}-\eta-\operatorname{cl}(\mathrm{A})\right)$, defined as the intersection of all (1, 2)*-semi-closed. (resp. (1, $2)^{*}-\alpha$-closed, $(1,2)^{*}-\eta$-closed) sets containing A.

The family of all regular $(1,2)^{*}$-open (resp. regular $(1,2)^{*}$-closed, $(1,2)^{*}$-semi-open, $(1,2)^{*}$ - α-open, $(1,2)^{*}-\eta$ open, $(1,2)^{*}$-semi-closed, $(1,2)^{*}$ - α-closed, $(1,2)^{*}-\eta$-closed) sets in X is denoted by $(1,2)^{*}-\mathrm{RO}(\mathrm{X})$ (resp. (1, $2)^{*}-\mathrm{RC}(\mathrm{X}),(1,2)^{*}-\mathrm{SO}(\mathrm{X}),(1,2)^{*}-\alpha \mathrm{O}(\mathrm{X}),(1,2)^{*}-\eta \mathrm{O}(\mathrm{X}),(1,2)^{*}-\mathrm{SC}(\mathrm{X}),(1,2)^{*}-\alpha \mathrm{C}(\mathrm{X}),(1,2)^{*}-\eta \mathrm{C}(\mathrm{X})$.

Remark 2.5. It is evident that any $\mathfrak{I}_{1,2}$-open set of X is an $(1,2)^{*}$ - α-open and each $(1,2)^{*}$ - α-open set of X is $(1,2)^{*}$-semi-open but the converses are not true.

Remark 2.6. We have the following implications for the properties of subsets [5]:
regular $(1,2)^{*}$-open $\Rightarrow \mathfrak{J}_{1,2}$-open $\Rightarrow(1,2)^{*}$ - α-open $\Rightarrow(1,2)^{*}$-semi-open $\Rightarrow(1,2)^{*}$ - η-open
Where none of the implications is reversible.

3. $(1,2)^{*}$-GENERALIZED η-CLOSED SETS IN BITOPOLOGICAL SPACES

Definition 3.1. A subset A of a bitopological space ($\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}$) is called
(i) $(1,2)^{*}$-generalized closed (briefly $(1,2)^{*}$ - g -closed) $[\mathbf{1 0}]$ if $\mathfrak{J}_{1,2}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $\mathfrak{J}_{1,2^{-}}$ open in X .
(ii) regular $(1,2)^{*}$ - generalized closed (briefly $(1,2)^{*}$-rg-closed) [3] if $\mathfrak{I}_{1,2}$-cl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and $\mathrm{U} \in$ (1, 2) $-\mathrm{RO}(\mathrm{X})$.
(iii) $(1,2)^{*}$-weakly closed (briefly $(1,2)^{*}$-w-closed) [2] if $\mathfrak{I}_{1,2}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $(1,2)^{*}$ -semi-open in X.
(iv) $(1,2)^{*}-\alpha$-generalized closed (briefly $(1,2)^{*}$ - α-closed) $[10]$ if $(1,2)^{*}-\alpha-c l(A) \subset U$ whenever $A \subset U$ and U is $\mathfrak{I}_{1,2 \text {-open in } X \text {. }}$
(v) regular $(1,2)^{*}$-generalized α-closed (briefly $(1,2)^{*}$-rg α-closed) $[11]$ if $(1,2)^{*}-\alpha-\operatorname{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and $\mathrm{U} \in(1,2)^{*}-\mathrm{RO}(\mathrm{X})$.
(vi) $(1,2)^{*}$-generalized semi-closed (briefly $(1,2)^{*}$-gs-closed) [10] if $(1,2)^{*}-\mathrm{s}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $\mathfrak{I}_{1,2 \text {-open in } \mathrm{X} \text {. }}$
(vii) regular $(1,2)^{*}$-generalized semi-closed (briefly $(1,2)^{*}$-rgs-closed) $[\mathbf{1 0}]$ if $(1,2)^{*}$-s-cl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset$ U and $\mathrm{U} \in(1,2)^{*}-\mathrm{RO}(\mathrm{X})$.
(viii) $(1,2)^{*}$-generalized η-closed (briefly $(1,2)^{*}$-g η-closed) [6] if $(1,2)^{*}-\eta$-cl(A) $\subset U$ whenever $A \subset U$ and U is $\mathfrak{I}_{1,2 \text {-open in } X .}$
(ix) regular $(1,2)^{*}$-generalized η-closed (briefly $(1,2)^{*}$-rg η-closed) if $(1,2)^{*}-\eta-\operatorname{cl}(A) \subset U$ whenever $A \subset U$ and $\mathrm{U} \in(1,2)^{*}-\mathrm{RO}(\mathrm{X})$.

The complement of a (1, 2) ${ }^{*}$-g-closed (resp. (1, 2) ${ }^{*}$-rg-closed, (1, 2) ${ }^{*}$-w-closed, (1, 2) ${ }^{*}$ - α g-closed, (1, 2) ${ }^{*}$-rg α closed, $(1,2)^{*}$-gs-closed, $(1,2)^{*}$-rgs-closed, $(1,2)^{*}$-g η-closed) set is called $(1,2)^{*}$-g-open (resp. $(1,2)^{*}$-rg-open, $(1,2)^{*}$-w-open, (1, 2) ${ }^{*}$-rg α-open, (1, 2) ${ }^{*}$ - αg-open, (1, 2) ${ }^{*}$-gs-open, (1, 2) ${ }^{*}$-rgs-open, (1, 2) ${ }^{*}$-g η-open).

We denote the set of all $(1,2)^{*}$-rg η-closed sets in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ by $(1,2)^{*}-\operatorname{rg\eta }-\mathrm{C}(\mathrm{X})$.
Theorem 3.2. Every $\mathfrak{I}_{1,2}$-closed set is rgn-closed.
Proof. Let A be any $\mathfrak{I}_{1,2}$-closed set in $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ and $\mathrm{A} \subset \mathrm{U}$, where $\mathrm{U} \in(1,2)^{*}-\mathrm{RO}(\mathrm{X})$. So $(1,2)^{*}-\mathrm{cl}(\mathrm{A})=\mathrm{A}$. Since every $\mathfrak{I}_{1,2}$-closed set is $(1,2)^{*}-\eta$-closed, so $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset(1,2)^{*}-\mathrm{cl}(\mathrm{A})=\mathrm{A}$. Therefore, $(1,2)^{*}-\eta$-cl(A) $\subset \mathrm{A} \subset \mathrm{U}$. Hence A is $(1,2)^{*}$-rg η-closed set.

Theorem 3.3. Every $(1,2)^{*}$-g-closed set is $(1,2)^{*}$-rgך-closed.
Proof. Let A be any $(1,2)^{*}$-g-closed set in $\left(X, \Im_{1}, \mathfrak{I}_{2}\right)$ then $(1,2)^{*}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where $\mathrm{U} \in(1$, $2^{*}-\mathrm{RO}(\mathrm{X})$, since every regular $(1,2)^{*}$-open set is $\mathfrak{I}_{1,2}$-open. So $(1,2)^{*}-\eta-\operatorname{cl}(\mathrm{A}) \subset(1,2)^{*}-\operatorname{cl}(\mathrm{A}) \subset \mathrm{U}$. Therefore $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $(1,2)^{*}-\mathrm{rg} \eta$-closed set.

Theorem 3.4. Every (1,2$)^{*}$-rg-closed set is $(1,2)^{*}$-rg η-closed.
Proof. Let A be any $(1,2)^{*}$ - g -closed set in $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$ then $(1,2)^{*}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where $\mathrm{U} \in(1$, $2^{*}-\mathrm{RO}(\mathrm{X})$. So $(1,2)^{*}-\eta-\operatorname{cl}(\mathrm{A}) \subset(1,2)^{*}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Therefore $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $(1,2)^{*}-\mathrm{rg} \eta-$ closed set.

Theorem 3.5. Every $(1,2)^{*}$ - α-closed set is (1,2$)^{*}$-rgn-closed.
Proof. Let A be any $(1,2)^{*}$ - α-closed set in $\left(X, \Im_{1}, \mathfrak{J}_{2}\right.$) and $\mathrm{A} \subset \mathrm{U}$, where $\mathrm{U} \in(1,2)^{*}-\mathrm{RO}(\mathrm{X})$. Since every (1 , $2^{*}-\alpha$-closed set is $(1,2)^{*}-\eta$-closed, so $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset(1,2)^{*}-\alpha-\mathrm{cl}(\mathrm{A})=\mathrm{A}$. Therefore $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{A} \subset \mathrm{U}$. Hence A is $(1,2)^{*}$-rg η-closed set.

Theorem 3.6. Every $(1,2)^{*}$ - α g-closed set is $(1,2)^{*}$-rg η-closed.
Proof. Let A be any $(1,2)^{*}-\alpha$ g-closed set in $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{I}_{2}\right)$ then $(1,2)^{*}-\alpha-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where $\mathrm{U} \in$ $(1,2)^{*}-\mathrm{RO}(\mathrm{X})$, since every regular $(1,2)^{*}$-open set is $\mathfrak{I}_{1,2}$-open. Given that A is $(1,2)^{*}$ - $\alpha \mathrm{g}$-closed set such that $(1,2)^{*}-\alpha-\operatorname{cl}(A) \subset \mathrm{U}$. But we have $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset(1,2)^{*}-\alpha-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Therefore $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $(1,2)^{*}$-rg η-closed set.

Theorem 3.7. Every (1, 2) ${ }^{*}$-rg α-closed set is (1,2$)^{*}$-rg η-closed.
Proof. Let A be any $(1,2)^{*}$ - α-closed set in $\left(X, \Im_{1}, \mathfrak{I}_{2}\right)$ then $(1,2)^{*}-\alpha-c l(A) \subset U$ whenever $A \subset U$, where $U \in$ $(1,2)^{*}-\mathrm{RO}(\mathrm{X})$. Given that A is $(1,2)^{*}-\alpha \mathrm{g}$-closed set such that $(1,2)^{*}-\alpha-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. But we have $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})$ $\subset(1,2)^{*}-\alpha-c l(A) \subset U$. Therefore $(1,2)^{*}-\eta-\operatorname{cl}(A) \subset U$. Hence A is $(1,2)^{*}-r g \eta$-closed set.
Theorem 3.8. Every (1, 2) ${ }^{*}$-semi-closed set is $(1,2)^{*}$-rg η-closed.

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 10 | October 2022

- Peer Reviewed Journal

Proof. Let A be any $(1,2)^{*}$-semi-closed set in $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ and $\mathrm{A} \subset \mathrm{U}$, where $\mathrm{U} \in(1,2)^{*}-\mathrm{RO}(\mathrm{X})$. Since every (1 , $2)^{*}$-semi-closed set is $(1,2)^{*}-\eta$-closed, so $(1,2)^{*}-\eta-\operatorname{cl}(\mathrm{A}) \subset(1,2)^{*}-\mathrm{s}-\mathrm{cl}(\mathrm{A})=\mathrm{A}$. Therefore $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{A} \subset$ U. Hence A is $(1,2)^{*}$-rg η-closed set.

Theorem 3.9. Every (1, 2) ${ }^{*}$-gs-closed set is (1,2$)^{*}$-rgn-closed.
Proof. Let A be any $(1,2)^{*}$-gs-closed set in $\left(X, \Im_{1}, \mathfrak{I}_{2}\right)$ then $(1,2)^{*}-s-c l(A) \subset U$ whenever $A \subset U$, where $U \in$ $(1,2)^{*}-\mathrm{RO}(\mathrm{X})$, since every regular $(1,2)^{*}$-open set is $\mathfrak{J}_{1,2}$-open. Given that A is $(1,2)^{*}$-gs-closed set such that $(1,2)^{*}-\mathrm{s}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. But we have $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset(1,2)^{*}-\mathrm{s}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Therefore $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $(1,2)^{*}$-rg η-closed set.

Theorem 3.10. Every (1, 2) ${ }^{*}$-rgs-closed set is (1,2$)^{*}$-rg η-closed.
Proof. Let A be any $(1,2)^{*}$-rgs-closed set in $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$ then $(1,2)^{*}-\mathrm{s}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where $\mathrm{U} \in$ $(1,2)^{*}-\operatorname{RO}(X)$. Given that A is $(1,2)^{*}$-gs-closed set such that $(1,2)^{*}-\operatorname{s-cl}(A) \subset U$. But we have $(1,2)^{*}-\eta-c l(A) \subset$ $(1,2)^{*}-s-c l(A) \subset U$. Therefore $(1,2)^{*}-\eta-\operatorname{cl}(A) \subset U$. Hence A is $(1,2)^{*}-r g \eta-c l o s e d ~ s e t$.

Theorem 3.11. Every (1, 2) ${ }^{*}-\eta$-closed set is (1,2$)^{*}$-rg η-closed.
Proof. Let A be any $(1,2)^{*}-\eta$-closed set in $\left(X, \Im_{1}, \mathfrak{J}_{2}\right)$ and $A \subset U$, where $U \in(1,2)^{*}-R O(X)$. Since A is $(1,2)^{*}$ -η-closed. Therefore $(1,2)^{*}-\eta$-cl(A) $=\mathrm{A} \subset \mathrm{U}$. Hence A is $(1,2)^{*}$-rg η-closed set.

Theorem 3.12. Every $(1,2)^{*}$-g η-closed set is $(1,2)^{*}$-rg η-closed.
Proof. Let A be any $(1,2)^{*}$-g η-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ then $(1,2)^{*}-\eta$-cl(A) $\subset U$ whenever $A \subset U$, where $U \in$ $(1,2)^{*}-\mathrm{RO}(\mathrm{X})$, since every regular $(1,2)^{*}$-open set is $\mathfrak{I}_{1,2}$-open. Given that A is $(1,2)^{*}$-g η-closed set such that $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Therefore $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $(1,2)^{*}-\mathrm{rg} \eta$-closed set.

Theorem 3.13. Every (1, 2) ${ }^{*}$-w-closed set is $(1,2)^{*}$-rg η-closed.
Proof. Let A be any $(1,2)^{*}$-w-closed set in $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ then $(1,2)^{*}$-cl $(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where $\mathrm{U} \in(1$, $2)^{*}$ - $\mathrm{RO}(\mathrm{X})$, since every regular $(1,2)^{*}$-open set is $(1,2)^{*}$-semi-open. So $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset(1,2)^{*}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Therefore $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $(1,2)^{*}-\mathrm{rg} \eta$-closed set.

Remark 3.14. We have the following implications for the properties of subsets:

Where none of the implications is reversible as can be seen from the following examples:

Example 3.15. Let $X=\{a, b, c, d\}$ with $\mathfrak{I}_{1}=\{\phi, X,\{a\},\{b\},\{a, b\},\{b, c, d\}\}$ and $\mathfrak{I}_{2}=\{\phi, X,\{c\},\{a, c, d\}\}$.
Then
(i) $\mathfrak{I}_{1,2}$-closed sets : $\phi, X,\{a\},\{b\},\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(ii) $(1,2)^{*}$-g-closed sets : $\phi, X,\{a\},\{b\},\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(iii) $(1,2)^{*}$-rg-closed sets : $\phi, X,\{a\},\{b\},\{d\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, c, d\}$, \{b, c, d\}.
(iv) $(1,2)^{*}-\alpha$-closed sets : $\phi, X,\{a\},\{b\},\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(v) $(1,2)^{*}$-ag-closed sets : $\phi, X,\{a\},\{b\},\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(vi) $(1,2)^{*}$-rg α-closed sets : $\phi, X,\{a\},\{b\},\{d\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, c$, d $\}$, $\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(vii) $(1,2)^{*}$-semi-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c$, d\}.
(viii) $(1,2)^{*}$-gs-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(ix) $(1,2)^{*}$-rgs-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b$, d\}, $\{a, c, d\},\{b, c, d\}$.
(x) $(1,2)^{*}-\eta$-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(xi) $(1,2)^{*}$-g η-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(xii) $(1,2)^{*}$-rg η-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a$, $\mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(xiii) $(1,2)^{*}$-w-closed sets : $\phi, X,\{a\},\{b\},\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.

Example 3.16. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\mathfrak{I}_{1}=\{\phi, \mathrm{X},\{\mathrm{b}\}\}$ and $\mathfrak{I}_{2}=\{\phi, \mathrm{X},\{\mathrm{c}\}\}$. Then
(i) $\mathfrak{I}_{1,2}$-closed sets : $\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$.
(ii) $(1,2)^{*}$-g-closed sets : $\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$.
(iii) $(1,2)^{*}$-rg-closed sets : $\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}$.
(iv) $(1,2)^{*}-\alpha$-closed sets: $\phi, X,\{a\},\{a, b\},\{a, c\}$.
(v) $(1,2)^{*}$ - α-closed sets: $\phi, X,\{a\},\{a, b\},\{a, c\}$.
(vi) $(1,2)^{*}$-rg α-closed sets: $\phi, X,\{a\},\{a, b\},\{a, c\},\{b, c\}$.
(vii) $(1,2)^{*}$-semi-closed sets : $\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$.
(viii) $(1,2)^{*}$-gs-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\}$.
(ix) $(1,2)^{*}$-rgs-closed sets: $\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}$.
(x) $(1,2)^{*}-\eta$-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\}$.
(xi) $(1,2)^{*}$-g η-closed sets : $\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$.
(xii) $(1,2)^{*}$-rg η-closed sets : $\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}$.
(xiii) $(1,2)^{*}$-w-closed sets : $\phi, X,\{a\},\{a, b\},\{a, c\}$.

Example 3.17. Let $X=\{a, b, c, d\}$ with $\mathfrak{I}_{1}=\{\phi, X,\{a\}\}$ and $\mathfrak{I}_{2}=\{\phi, X,\{b\},\{a, b, c\}\}$. Then
(i) $\mathfrak{I}_{1,2}$-closed sets : $\phi, \mathrm{X},\{\mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(ii) $(1,2)^{*}$-g-closed sets : $\phi, X,\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(iii) $(1,2)^{*}$-rg-closed sets : $\phi, X,\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, c$, d $\},\{b, c, d\}$.
(iv) $(1,2)^{*}$ - α-closed sets : $\phi, \mathrm{X},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(v) $(1,2)^{*}$ - α-closed sets: $\phi, X,\{c\},\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(vi) $(1,2)^{*}$-rg α-closed sets : $\phi, X,\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, c$, d $\}$, $\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(vii) $(1,2)^{*}$-semi-closed sets: $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, c, d\},\{b, c, d\}$. (viii) $(1,2)^{*}$-gs-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b$, $\mathrm{c}, \mathrm{d}\}$.
(ix) $(1,2)^{*}$-rgs-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b$, d\}, $\{a, c, d\},\{b, c, d\}$.
(x) $(1,2)^{*}-\eta$-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, c, d\},\{b, c, d\}$.
(xi) $(1,2)^{*}$-g η-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b$, $\mathrm{c}, \mathrm{d}\}$.
(xii) $(1,2)^{*}$-rg η-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a$, b, d\}, $\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(xiii) $(1,2)^{*}$-w-closed sets : $\phi, X,\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.

Example 3.18. Let $X=\{a, b, c, d\}$ with $\mathfrak{I}_{1}=\{\phi, X,\{a\},\{b\},\{a, b\},\{a, b, c\}\}$ and $\mathfrak{I}_{2}=\{\phi, X,\{a, b, d\}\}$. Then
(i) $\mathfrak{I}_{1,2}$-closed sets : $\phi, \mathrm{X},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(ii) $(1,2)^{*}$-g-closed sets : $\phi, X,\{c\},\{d\},\{c, d\},\{a, c, d\},\{b, c, d\}$.
(iii) $(1,2)$-rg-closed sets : $\phi, X,\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, c$, d $\},\{b, c, d\}$.
(iv) $(1,2)^{*}$ - α-closed sets : $\phi, \mathrm{X},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(v) $(1,2)^{*}$ - α g-closed sets : $\phi, X,\{c\},\{d\},\{c, d\},\{a, c, d\},\{b, c, d\}$.
(vi) $(1,2)^{*}$-rg α-closed sets : $\phi, X,\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}$, d $\}$, $\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(vii) $(1,2)^{*}$-semi-closed sets: $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, c, d\},\{b, c, d\}$.
(viii) $(1,2)^{*}$-gs-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, c, d\},\{b, c, d\}$.
(ix) $(1,2)^{*}$-rgs-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b$, d\}, $\{a, c, d\},\{b, c, d\}$.
(x) $(1,2)^{*}-\eta$-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, c, d\},\{b, c$, d\}.
(xi) $(1,2)^{*}$-g η-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, c, d\},\{b, c$, d\}.
(xii) $(1,2)^{*}$-rgn-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a$, $\mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(xiii) $(1,2)^{*}$-w-closed sets : $\phi, X,\{c\},\{d\},\{c, d\},\{a, c, d\},\{b, c, d\}$.

4. CHARACTERIZATIONS OF $(1,2)^{*}$-GENERALIZED η-CLOSED SETS

Theorem 4.1. The union of two $(1,2)^{*}$-rg η-closed subsets of $\left(X, \Im_{1}, \mathfrak{I}_{2}\right)$ is also $(1,2)^{*}$-rg η-closed subset of (X, $\mathfrak{I}_{1}, \mathfrak{J}_{2}$).

Proof. Assume that A and B are $(1,2)^{*}$-rg η-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. Let U be regular $(1,2)^{*}$-open set in (X, $\mathfrak{I}_{1}, \mathfrak{J}_{2}$) such that $\mathrm{A} \cup \mathrm{B} \subset \mathrm{U}$, then $\mathrm{A} \subset \mathrm{U}$ and $\mathrm{B} \subset \mathrm{U}$. Since A and B are $(1,2)^{*}-\operatorname{rg} \eta$-closed such that $(1,2)^{*}-\eta-$ $\operatorname{cl}(\mathrm{A}) \subset \mathrm{U}$ and $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{B}) \subset \mathrm{U}$. Hence $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A} \cup \mathrm{B})=(1,2)^{*}-\eta-\operatorname{cl}(\mathrm{A}) \cup(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{B}) \subset \mathrm{U}$. That is $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A} \cup \mathrm{B}) \subset \mathrm{U}$. Therefore $\mathrm{A} \cup \mathrm{B}$ is $(1,2)^{*}$-rg - -closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$.

Theorem 4.2. The intersection of two $(1,2)^{*}$-rg η-closed-sets in (X, $\left.\mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$ is also a $(1,2)^{*}$-rg η-closed set in (X, $\mathfrak{I}_{1}, \mathfrak{I}_{2}$).
Proof. Easy to proof.
Theorem 4.3. If a subset A is $(1,2)^{*}-\mathrm{rg} \eta$-closed, then $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})-\mathrm{A}$ does not contain any non-empty regular (1, 2) ${ }^{*}$-closed set.
Proof. Suppose that A is $(1,2)^{*}$-rg η-closed. Let F be a regular $(1,2)^{*}$-closed subset of $(1,2)^{*}-\eta$-cl(A) -A . Then $\mathrm{F} \subset\left[(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \cap(\mathrm{X}-\mathrm{A})\right]$ and so $\mathrm{A} \subset[\mathrm{X}-\mathrm{F}]$. But A is $(1,2)^{*}$-rg η-closed. Therefore $(1,2)^{*}-\eta$-cl(A) $\subset[\mathrm{X}$ $-\mathrm{F}]$. Consequently, $\mathrm{F} \subset\left[\mathrm{X}-(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})\right]$. We already have $\mathrm{F} \subset(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})$. Hence $\mathrm{F} \subset\left[(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})\right.$ $\left.\cap \mathrm{X}-(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})\right]=\phi$. Thus $\mathrm{F}=\phi$. Therefore $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})-\mathrm{A}$ contains no non-empty regular $(1,2)^{*}-$ closed set.

Example 4.4. The converse of Theorem 4.3 is not true.
Refer to Example 3.18. Let $A=\{a, b, c\}$. We have that $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})-\mathrm{A}=\mathrm{X}-\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\{\mathrm{d}\}$ does not contain any non-empty regular $(1,2) *$-closed set. However, A is $(1,2)^{*}$-rg η-closed in X .

Theorem 4.5. Let A be (1,2)*-rgף-closed set. Then A is regular (1, 2)*-closed if and only if $\left[(1,2)^{*}-\mathrm{cl}\left((1,2)^{*}-\right.\right.$ $\operatorname{int}(\mathrm{A}))-\mathrm{A}]$ is regular $(1,2)^{*}$-closed.

Proof. Let A be a $(1,2)^{*}-$ rgn η-closed. If A is regular (1, 2)* - closed, then $\left[(1,2)^{*}-\operatorname{cl}\left((1,2)^{*}-\operatorname{int}(\mathrm{A})\right)-\mathrm{A}\right]=\phi$. We know ϕ is always regular $(1,2)^{*}$-closed. Therefore $\left[(1,2)^{*}-\mathrm{cl}\left((1,2)^{*}-\operatorname{int}(\mathrm{A})\right)-\mathrm{A}\right]$ is regular $(1,2)^{*}$-closed.

Conversely, suppose that $\left[(1,2)^{*}-\mathrm{cl}\left((1,2)^{*}-\operatorname{int}(\mathrm{A})\right)-\mathrm{A}\right]$ is regular $(1,2)^{*}$-closed. Since A is $(1,2)^{*}-\mathrm{rg} \eta-\mathrm{closed}$, $\left[(1,2)^{*}-\mathrm{cl}(\mathrm{A})-\mathrm{A}\right]$ contains the regular $(1,2)^{*}-\operatorname{closed} \operatorname{set}\left[(1,2)^{*}-\mathrm{cl}\left((1,2)^{*}-\operatorname{int}(\mathrm{A})\right)-\mathrm{A}\right]$. By Theorem 4.3, [(1, $\left.2)^{*}-\operatorname{cl}\left((1,2)^{*}-\operatorname{int}(\mathrm{A})\right) \backslash \mathrm{A}\right]=\phi$. Hence $(1,2)^{*}-\operatorname{cl}\left((1,2)^{*}-\operatorname{int}(\mathrm{A})\right)=\mathrm{A}$. Therefore A is regular (1, 2)*-closed.

Remark 4.6. The converse of Theorem 4.4 is not true as per the following example.
Example 4.7. Let $X=\{a, b, c, d, e\}$ with $\mathfrak{I}_{1}=\{\phi, X,\{a, b\},\{a, b, c, d\}\}$ and $\mathfrak{I}_{2}=\{\phi, X,\{c, d\},\{a, b, c, d\}\}$. If we consider $A=\{a, c\}$, then $(1,2)^{*}-\eta-c l(A)-A=X-\{a, c\}=\{b, d, e\}$ does not contain any non-empty regular $(1,2)^{*}$-closed set. However A is $(1,2)^{*}$-rg η-closed.
Theorem 4.8. For an element $x \in\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$, the set $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)-\{x\}$ is $(1,2)^{*}$-rg η-closed or regular $(1,2)^{*}$ open.
Proof. Suppose $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)-\{\mathrm{x}\}$ is not regular $(1,2)^{*}$-open set. Then $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is the only regular $(1,2)^{*}-$ open set containing $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)-\{x\}$. This implies $(1,2)^{*}-\eta-\mathrm{cl}\left(\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)-\{x\}\right) \subset\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. Hence $\left(X, \mathfrak{I}_{1}\right.$, $\left.\mathfrak{J}_{2}\right)-\{x\}$ is $(1,2)-r g \eta$-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$.

Theorem 4.9. Let A be $\mathrm{a}(1,2)^{*}-\mathrm{rg} \eta$-closed subset of X . If $\mathrm{A} \subset \mathrm{B} \subset(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})$, then B is also $(1,2)^{*}-\mathrm{rg} \eta-$ closed in X.
Proof. Let $U \in(1,2)^{*}-r g \eta-O(X)$ with $B \subset U$. Then $A \subset U$. Since A is $(1,2)^{*}-\operatorname{rg} \eta$-closed, $(1,2)^{*}-\eta-c l(A) \subset U$. Also, since $B \subset(1,2)^{*}-\eta-\operatorname{cl}(A),(1,2)^{*}-\eta-c l(B) \subset(1,2)^{*}-\eta-c l(A) \subset U$. Hence B is also $(1,2)^{*}-r g \eta$-closed subset of X .

Remark 4.10. The converse of the Theorem 4.9 need not be true in general. Consider the bitopological space $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ where $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ with topology $\mathfrak{I}_{1}=\{\phi,\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}, \mathfrak{I}_{2}=\{\phi,\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$, $X\}$, Let $A=\{b\}$ and $B=\{b, c\}$. Then A and B are $(1,2)^{*}-r g \eta$-closed sets in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ but $A \subset B$ is not subset in $(1,2)^{*}-\eta-\operatorname{cl}(A)=\{a, b\}$.

Theorem 4.11. Let A be a $(1,2)^{*}$-rg η-closed in $\left(X, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$. Then A is $(1,2)^{*}-\eta$-closed if and only if $(1,2)^{*}-\eta$ -$\mathrm{cl}(\mathrm{A})-\mathrm{A}$ is a regular $(1,2)^{*}$-open.
Proof. Suppose A is a $(1,2)^{*}-\eta$-closed in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. Then $(1,2)^{*}-\eta-\operatorname{cl}(A)=A$ and so $(1,2)^{*}-\eta \operatorname{cl}(A)-A=\phi$, which is regular $(1,2)^{*}$-open in $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$.

Conversely, suppose $(1,2)^{*}-\eta-\operatorname{cl}(\mathrm{A})-\mathrm{A}$ is a regular $(1,2)^{*}$-open set in $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$. Since A is $(1,2)^{*}-$-rg η closed, by Theorem $4.3(1,2)^{*}-\eta$-cl(A) - A does not contain any nonempty regular $(1,2)^{*}$-open in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. Then $(1,2)^{*}-\eta-\operatorname{cl}(\mathrm{A})-\mathrm{A}=\phi$. Hence A is $(1,2)^{*}-\eta$-closed set in $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$.

Theorem 4.12. If A is regular (1,2$)^{*}$-open and $(1,2)^{*}$-rg η-closed, then A is $(1,2)^{*}$-rg η-closed set in $\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$. Proof. Let U be any regular $(1,2)^{*}$-open set in $\left(X, \Im_{1}, \Im_{2}\right)$ such that $A \subset U$. Since A is regular $(1,2)^{*}$-open and $(1,2)^{*}-\operatorname{rg} \eta$-closed, we have $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{A}$. Then $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{A} \subset \mathrm{U}$. Hence A is $(1,2)^{*}$ rg η-closed set in $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$.

Theorem 4.13. If a subset A of bitopological space ($\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{I}_{2}$) is both regular (1, 2) ${ }^{*}$-open and (1, 2) ${ }^{*}$-rg η closed, then it is $(1,2)^{*}-\eta$-closed.
Proof. Suppose a subset A of bitopological space (X, $\mathfrak{I}_{1}, \mathfrak{I}_{2}$) is both regular (1, 2) ${ }^{*}$-open and $(1,2)^{*}$-rg η-closed. Now $A \subset A$. Then $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset A$. Hence A is $(1,2)^{*}-\eta$-closed.

Corollary 4.14. Let A be regular (1, 2) ${ }^{*}$-open and $(1,2)^{*}$-rg η-closed subset in $\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$. Suppose that F is (1 , $2)^{*}-\eta$-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. Then $\mathrm{A} \cap \mathrm{F}$ is an $(1,2)^{*}$-rg η-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$.
Proof. Let A be a regular (1, 2) ${ }^{*}$-open and (1, 2) ${ }^{*}$-rgク-closed subset in (X, $\mathfrak{J}_{1}, \mathfrak{I}_{2}$) and F be closed. By Theorem 4.13, A is $(1,2)^{*}-\eta$-closed. So $\mathrm{A} \cap \mathrm{F}$ is a $(1,2)^{*}-\eta$-closed and hence $\mathrm{A} \cap \mathrm{F}$ is $(1,2)^{*}$-rg η-closed set in (X, $\mathfrak{I}_{1}, \mathfrak{I}_{2}$).
Theorem 4.15 [6]. If A is an open and S is $(1,2)^{*}-\eta$-open in bitopological space $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$, then $\mathrm{A} \cap \mathrm{S}$ is $(1$, $2)^{*}-\eta$-open in $\left(X, \Im_{1}, \mathfrak{J}_{2}\right)$.

Theorem 4.16. If A is both open and (1, 2) ${ }^{*}$-g-closed set in (X, $\mathfrak{I}_{1}, \mathfrak{I}_{2}$), then it is $(1,2)^{*}$-rg η-closed set in (X, $\mathfrak{J}_{1}, \mathfrak{I}_{2}$).

Proof. Let A be an open and $(1,2)^{*}$-g-closed set in $\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$. Let $\mathrm{A} \subset \mathrm{U}$ and let U be a regular (1, 2) ${ }^{*}$-open set in $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$. Now $\mathrm{A} \subset \mathrm{A}$. By hypothesis $(1,2)^{*}-\eta-\operatorname{cl}(\mathrm{A}) \subset \mathrm{A}$. That is $(1,2)^{*}-\eta-\operatorname{cl}(\mathrm{A}) \subset \mathrm{U}$. Thus A is $(1,2)^{*}-$ $\operatorname{rg} \eta$-closed in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$.

5. $(1,2)^{*}$-RG η-OPEN SETS AND $(1,2)^{*}$-RG η-NEIGHBORHOOD

In this section, we introduce $(1,2)^{*}$-rg η-open sets in bitopological spaces and study some basic properties of (1, $2^{*}{ }^{*}$-rg η-open sets. Also, we introduce (1,2$)^{*}$-rg η-neighborhood (shortly $(1,2)^{*}$-g η-nbhd in bitopological spaces by using the notion of $(1,2)^{*}$-rg η-open sets. We prove that every nbhd of x in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is $(1,2)^{*}$-rg η-nbhd of x but not conversely.

Definition 5.1. A subset A in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is called regular (1, 2) ${ }^{*}$-generalized η-open (briefly, (1,2) ${ }^{*}$-rg η-open) in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ if A^{c} is $(1,2)^{*}-\operatorname{rg} \eta$-closed in $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. We denote the family of all $(1,2)^{*}-\operatorname{rg} \eta$-open sets in X by $(1,2)^{*}-\mathrm{rg} \eta-\mathrm{O}(\mathrm{X})$.

Theorem 5.2. A set A is $(1,2)^{*}$-rg η-open if and only if the following condition holds:
$\mathrm{F} \subset(1,2)^{*}-\eta-\operatorname{int}(\mathrm{A})$ whenever F is regular $(1,2)^{*}$-closed and $\mathrm{F} \subset \mathrm{A}$.
Proof. Suppose the condition holds. Put $[X-A]=B$. Suppose that $B \subset U$ where $U \in(1,2)^{*}-R-O(X)$. Now $X-$ $\mathrm{A} \subset \mathrm{U}$ implies $\mathrm{F}=[\mathrm{X}-\mathrm{U}] \subset \mathrm{A}$ and F is regular (1, 2)* -closed, which implies $\mathrm{F} \subset(1,2)^{*}-\eta$-int (A). Also $\mathrm{F} \subset$ $(1,2)^{*}-\eta-\operatorname{int}(A)$ implies $\left[X-(1,2)^{*}-\eta-\operatorname{int}(A)\right] \subset[X-F]=U$. This implies $\left[X-\left((1,2)^{*}-\eta-\operatorname{int}(X-B)\right)\right] \subset U$. Therefore $\left[X-\left((1,2)^{*}-\eta-\operatorname{int}(X-B)\right)\right] \subset U$ or equivalently $(1,2)^{*}-\eta-\operatorname{cl}(B) \subset U$. Thus B is $(1,2)^{*}-\operatorname{rg} \eta-c l o s e d$. Hence A is $(1,2)^{*}-\mathrm{rg} \eta$-open.

Conversely, suppose that A is $(1,2)^{*}-\mathrm{rg} \eta$-open, $\mathrm{F} \subset \mathrm{A}$ and F is regular $(1,2)^{*}$-closed. Then $[\mathrm{X}-\mathrm{F}]$ is regular $(1$, $2)^{*}$-open. Then $(X-A) \subset(X-F)$. Hence $(1,2)^{*}-\eta-c l(X-A) \subset(X-F)$ because $(X-A)$ is $(1,2)^{*}-$ rg η-closed. Therefore $\mathrm{F} \subset\left(X-(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{X}-\mathrm{A})\right)=(1,2)^{*}-\eta-\operatorname{int}(\mathrm{A})$.

Definition 5.3. Let $\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$ be a bitopological space and let $\mathrm{x} \in\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$. A subset N of $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is said to be a $(\mathbf{1}, \mathbf{2})^{*}-\mathbf{r g} \eta-n b h d$ of x iff there exists a $(1,2)^{*}-\mathrm{rg} \eta$-open set G such that $\mathrm{x} \in \mathrm{G} \subset \mathrm{N}$.

Definition 5.4. A subset N of a bitopological space $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$, is called a $(\mathbf{1}, \mathbf{2})^{*}-\mathbf{r g \eta} \eta$-nbhd of $A \subset\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ iff there exists a $(1,2)^{*}-r g \eta$-open set G such that $A \subset G \subset N$.

Theorem 5.5. Every nbhd N of $\mathrm{x} \in\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is a $(1,2)^{*}-\mathrm{rg} \eta$-nbhd of $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$.
Proof. Let N be a nbhd of point $\mathrm{x} \in\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$. To prove that N is a $(1,2)^{*}$-rg η-nbhd of x . By definition of nbhd, there exists an open set G such that $x \in G \subset N$. As every open set is $(1,2)^{*}-r g \eta$-open set G such that $x \in$ $\mathrm{G} \subset \mathrm{N}$. Hence N is $(1,2)^{*}-\mathrm{rg} \eta$-nbhd of x .
Remark 5.6. In general, a $(1,2)^{*}$-rg η-nbhd N of $x \in\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ need not be a nbhd of x in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$, as seen from the following example.

Example 5.7. Let $X=\{a, b, c, d\}$ with topology $\mathfrak{I}_{1}=\{\phi,\{a\},\{b\},\{a, b\},\{a, b, c\}, X\}$ and $\mathfrak{I}_{2}=\{\phi,\{a, b, d\}$, $X\}$ Then $(1,2)^{*}-\mathrm{rg} \eta-\mathrm{O}(\mathrm{X})=\{\phi, X,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}$,
$\mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}\}$. The set $\{\mathrm{b}, \mathrm{c}\}$ is $(1,2)^{*}$-rg η-nbhd of the point b , there exists an $(1,2)^{*}$-rg η-open set $\{b\}$ is such that $b \in\{b\} \subset\{b, c\}$. However, the set $\{b, c\}$ is not a nbhd of the point b, since no open set G exists such that $b \in G \subset\{a, c\}$.

Theorem 5.8. If a subset N of a space $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is $(1,2)^{*}$-rg - -open, then N is a $(1,2)^{*}$-rg η-nbhd of each of its points.
Proof. Suppose N is $(1,2)^{*}-\operatorname{rg} \eta$-open. Let $x \in N$. We claim that N is $(1,2)^{*}-\operatorname{rg} \eta-n b h d$ of x. For N is a $(1,2)^{*}-$ $\operatorname{rg} \eta$-open set such that $x \in N \subset N$. Since x is an arbitrary point of N, it follows that N is a $(1,2)^{*}$-rg η-nbhd of each of its points.

Definition 5.9. Let x be a point in a space $\left(X, \Im_{1}, \mathfrak{J}_{2}\right)$. The set of all $(1,2)^{*}-\operatorname{rg} \eta$-nbhd of x is called the $(\mathbf{1}, \mathbf{2})^{*}$ rg η-nbhd system at x, and is denoted by $(1,2)^{*}-r g \eta-N(x)$.

Theorem 5.10. Let $\left(X, \Im_{1}, \mathfrak{I}_{2}\right)$ be a bitopological space and for each $x \in\left(X, \Im_{1}, \mathfrak{I}_{2}\right)$. Let $(1,2)^{*}-\operatorname{rg} \eta-N(x)$ be the collection of all $(1,2)^{*}$-rg η-nbhds of x. Then we have the following results.
(i) $\vee \mathrm{x} \in\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right),(1,2)^{*}-\mathrm{rg} \eta-\mathrm{N}(\mathrm{x}) \neq \phi$.
(ii) $\mathrm{N} \in(1,2)^{*}-\mathrm{rg} \eta-\mathrm{N}(\mathrm{x}) \Rightarrow \mathrm{x} \in \mathrm{N}$.
(iii) $\mathrm{N} \in(1,2)^{*}-\mathrm{rg} \eta-\mathrm{N}(\mathrm{x}), \mathrm{M} \supset \mathrm{N} \Rightarrow \mathrm{M} \in(1,2)^{*}-\operatorname{rg} \eta-\mathrm{N}(\mathrm{x})$.
(iv) $\mathrm{N} \in(1,2)^{*}-\operatorname{rg} \eta-\mathrm{N}(\mathrm{x}), \mathrm{M} \in(1,2)^{*}-\mathrm{rg} \eta-\mathrm{N}(\mathrm{x}) \Rightarrow \mathrm{N} \cap \mathrm{M} \in(1,2)^{*}-\operatorname{rg} \eta-\mathrm{N}(\mathrm{x})$.
(v) $\mathrm{N} \in(1,2)^{*}-\operatorname{rg} \eta-\mathrm{N}(\mathrm{x}) \Rightarrow$ there exists $\mathrm{M} \in(1,2)^{*}-\operatorname{rg} \eta-\mathrm{N}(\mathrm{x})$ such that $\mathrm{M} \subset \mathrm{N}$ and $\mathrm{M} \in(1,2)^{*}-\operatorname{rg} \eta-\mathrm{N}(\mathrm{y})$ for every $\mathrm{y} \in \mathrm{M}$.

Proof. (i) Since $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is a $(1,2)^{*}$-rg η-open set, it is a $(1,2)^{*}$-rg η-nbhd of every $\mathrm{x} \in\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. Hence there exists at least one $(1,2)^{*}$-rg η-nbhd (namely $-\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$) for each $\mathrm{x} \in\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. Hence $(1,2)^{*}-\mathrm{rg} \eta-\mathrm{N}(\mathrm{x})$ $=\phi$ for every $\mathrm{x} \in\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$.
(ii) If $N \in(1,2)^{*}-\operatorname{rg} \eta-N(x)$, then N is a $(1,2)^{*}-\operatorname{rg} \eta$-nbhd of x. So by definition of $(1,2)^{*}-\operatorname{rg} \eta-n b h d, x \in N$.
(iii) Let $N \in(1,2)^{*}-\operatorname{rg} \eta-N(x)$ and $M \supset N$. Then there is a $(1,2)^{*}-r g \eta$-open set G such that $x \in G \subset N$. Since N $\subset M, x \in G \subset M$ and so M is $(1,2)^{*}-r g \eta-n b h d$ of x. Hence $M \in(1,2)^{*}-r g \eta-N(x)$.
(iv) Let $\mathrm{N} \in(1,2)^{*}-\mathrm{rg} \eta-\mathrm{N}(\mathrm{x})$ and $\mathrm{M} \in(1,2)^{*}-\mathrm{rg} \eta-\mathrm{N}(\mathrm{x})$. Then by definition of $(1,2)^{*}-\mathrm{rg} \eta$-nbhd. Hence $\mathrm{x} \in \mathrm{G}_{1}$ $\cap G_{2} \subset N \cap M \Rightarrow(1)$. Since $G_{1} \cap G_{2}$ is a (1,2)* - rg η-open set, (being the intersection of two (1,2$)^{*}$-rg η-open sets), it follows from (1) that $N \cap M$ is a (1, 2) ${ }^{*}-r g \eta-n b h d$ of x. Hence $N \cap M \in(1,2)^{*}-r g \eta-N(x)$.
(v) If $N \in(1,2)^{*}-\operatorname{rg} \eta-N(x)$, then there exists a $(1,2)^{*}-r g \eta$-open set M such that $x \in M \subset N$. Since M is a $(1,2)^{*}$ $\operatorname{rg\eta } \eta$-open set, it is $(1,2)^{*}-r g \eta-n b h d$ of each of its points. Therefore $M \in(1,2)^{*}-r g \eta-N(y)$ for every $y \in M$.

6. CONCLUSION

In this paper, we introduce regular $(1,2)^{*}$-generalized η-closed sets and obtain the relationships among some existing closed sets like $(1,2)^{*}$-semi- closed, $(1,2)^{*}-\alpha$ - closed and $(1,2)^{*}-\eta$ - closed sets and their generalizations. Also we study some basic properties of (1, 2)*-rg η-open sets. Further, we introduce (1, 2)*-rg η neighbourhood and discuss some properties of (1,2)*-rgఇ-neighbourhood. The regular (1, 2)*-generalized η closed sets can be used to derive a new decomposition of unity, closed map and open map, homeomorphism,

SJIF Impact Factor 2022: 8.197| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016
 ISSN: 2455-7838(Online)
 EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 10 | October 2022

- Peer Reviewed Journal
closure and interior and new separation axioms. This idea can be extended to ordered topological and fuzzy topological spaces.

REFERENCES

1. M. Datta, Projective Bitopological Spaces, J. Austral. Math. Soc., 13(1972), 327-334.
2. Z. Duszynski, M. Jeyaraman, M. S. Joseph. O. Ravi and M. L. Thivagar, A new generalization of closed sets in bitopology, South Asian Jour. of Mathematics, Vol. 4, Issue 5, (2014), 215-224.
3. K. Kayathri, O. Ravi, M. L. Thivagar and M. Joseph Israel, Mildly (1, 2)*-normal spaces and some bitopological functions, No 1, 135(2010), 1-13.
4. J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
5. H. Kumar, On (1, 2)*- η-open sets in bitopological spaces, Jour. of Emerging Tech. and Innov. Res., Vol. 9, Issue 8, (2022), c194-c198.
6. H. Kumar, (1, 2)*-generalized η-closed sets in bitopological spaces, EPRA Int. Jour. of Multidisciplinary Research (IJMR)., Vol. 8, Issue 9, (2022), 319-326.
7. O. Ravi, M. L. Thivagar, On stronger forms of (1,2)*-quotient mappings in bitopological spaces. Internat. J. Math. Game Theory and Algebra 14 (2004), 481-492.
8. O. Ravi, M. Lellis Thivagar and Erdal Ekici, On (1,2)*-sets and decompositions of bitopological (1, 2)*-continous mappings, Kochi J. Math. 3 (2008), 181-189
9. O. Ravi, M. L. Thivagar, Remarks on λ-irresolute functions via (1, 2)*-sets, (submitted).
10. O. Ravi, M. L. Thivagar and Jin Jinli, Remarks on extensions of (1, 2)*-g-closed mappings in bitopology, (submitted).
11. D. Sreeja and P. Juane Sinthya, Malaya J. Mat. S(1)(2015), 27-41.
