

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 10 | October 2022 - Peer Reviewed Journal

REGULAR (1, 2)*-GENERALIZED η -CLOSED SETS IN BITOPOLOGY

Hamant Kumar

Department of Mathematics, Veerangana Avantibai Government Degree College, Atrauli-Aligarh, U. P. (India)

ABSTRACT

In this paper, we introduce regular $(1, 2)^*$ -generalized η -closed sets and obtain the relationships among some existing closed sets like $(1, 2)^*$ -semi-closed, $(1, 2)^*$ - α -closed and $(1, 2)^*$ - η -closed sets and their generalizations. Also we study some basic properties of $(1, 2)^*$ -rg η -open sets. Further, we introduce $(1, 2)^*$ -rg η -neighbourhood and discuss some properties of $(1, 2)^*$ -rg η -neighbourhood.

KEYWORDS: $(1, 2)^*$ - η -open, $(1, 2)^*$ - $g\eta$ -closed, $(1, 2)^*$ - $rg\eta$ -closed sets; $(1, 2)^*$ - $rg\eta$ -neighbourhood

1. INTRODUCTION

The study of bitopological spaces was first intiated by Kelly [4] in 1963. By using the topological notions, namely, semi-open, α -open and pre-open sets, many new bitopological sets are defined and studied by many topologists. In 2008, Ravi et al. [8] studied the notion of $(1, 2)^*$ -sets in bitopological spaces. In 2004, Ravi and Thivagar [7] studied the concept of stronger from of $(1, 2)^*$ -quatient mapping in bitopological spaces and introduced the concepts of $(1, 2)^*$ -semi-open and $(1, 2)^*$ - α -open sets in bitopological spaces. In 2010, K. Kayathri et al. [3] introduced and studied a new class of sets called regular $(1, 2)^*$ -g-closed sets and used it to obtain a new class of functions called $(1, 2)^*$ -rg-continuous, $(1, 2)^*$ -R-map, almost $(1, 2)^*$ -continuous and almost $(1, 2)^*$ -rg-closed functions in bitopological spaces. In 2015, D. Sreeja and P. Juane Sinthya [11] introduced $(1, 2)^*$ -rg α -closed sets. Some of its basic properties are studied. In 2022, H. Kumar [5] introduced the concept of $(1, 2)^*$ - η -open sets and $(1, 2)^*$ - η -neighbourhood and; studied their properties. Recently H. Kumar [6] introduced the concept of $(1, 2)^*$ -generalized η -closed sets and $(1, 2)^*$ -g-neighbourhood and; investigated their properties.

2. PRELIMINARIES

Throughout the paper $(X, \mathfrak{I}_1, \mathfrak{I}_2)$, (Y, σ_1, σ_2) and (Z, \wp_1, \wp_2) (or simply X, Y and Z) denote bitopological spaces.

Definition 2.1. Let S be a subset of X. Then S is said to be $\mathfrak{T}_{1,2}$ -open [7] if $S = A \cup B$ where $A \in \mathfrak{T}_1$ and $B \in \mathfrak{T}_2$. The complement of a $\mathfrak{T}_{1,2}$ -open set is $\mathfrak{T}_{1,2}$ -closed.

Definition 2.2 [7]. Let S be a subset of X. Then

(i) the $\mathfrak{J}_{1,2}$ -closure of S, denoted by $\mathfrak{J}_{1,2}$ -cl(S), is defined as $\cap \{F : S \subset F \text{ and } F \text{ is } \mathfrak{I}_{1,2}$ -closed $\}$; (ii) the $\mathfrak{J}_{1,2}$ -interior of S, denoted by $\mathfrak{J}_{1,2}$ -int(S), is defined as $\cup \{F : F \subset S \text{ and } F \text{ is } \mathfrak{I}_{1,2}$ -open $\}$.

Note 2.3 [7]. Notice that $\mathfrak{I}_{1,2}$ -open sets need not necessarily form a topology.

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 10 | October 2022

- Peer Reviewed Journal

Definition 2.4. A subset A of a bitopological space $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is called

- (i) regular $(1,2)^*$ -open [7] if $A = \mathfrak{I}_{1,2}$ -int $(\mathfrak{I}_{1,2}$ -cl((A)).
- (ii) $(1, 2)^*$ -semi-open [7] if $A = \mathfrak{I}_{1,2}$ -cl $(\mathfrak{I}_{1,2}$ -int(A)),
- (iii) $(1,2)^*$ - α -open [7] if $A \subset \mathfrak{I}_{1,2}$ -int $(\mathfrak{I}_{1,2}$ -cl $(\mathfrak{I}_{1,2}$ -int (A))).
- (iv) (1, 2)*- η -open [5] if $A \subset \mathfrak{I}_{1,2}$ -int($\mathfrak{I}_{1,2}$ -cl($\mathfrak{I}_{1,2}$ -int)(A)) $\cup \mathfrak{I}_{1,2}$ -cl($\mathfrak{I}_{1,2}$ -int)(A)).

The complement of a regular $(1, 2)^*$ -open (resp. $(1, 2)^*$ -semi-open, $(1, 2)^*$ - α -open, $(1, 2)^*$ - η -open) set is called **regular** $(1, 2)^*$ -**closed** (resp. $(1, 2)^*$ -semi-closed, $(1, 2)^*$ - α -closed, $(1, 2)^*$ - η -closed).

The $(1, 2)^*$ -semi-closure (resp. $(1, 2)^*$ - α -closure, $(1, 2)^*$ - η -closure) of a subset A of X is denoted by $(1, 2)^*$ -scl(A) (resp. $(1, 2)^*$ - α -cl(A), $(1, 2)^*$ - η -cl(A)), defined as the intersection of all $(1, 2)^*$ -semi-closed. (resp. $(1, 2)^*$ - α -closed, $(1, 2)^*$ - η -closed) sets containing A.

The family of all regular $(1, 2)^*$ -open (resp. regular $(1, 2)^*$ -closed, $(1, 2)^*$ -semi-open, $(1, 2)^*$ - α -open, $(1, 2)^*$ - α -open, $(1, 2)^*$ -semi-closed, $(1, 2)^*$ - α -closed, $(1, 2)^*$ - α -closed) sets in X is denoted by $(1, 2)^*$ -RO(X) (resp. $(1, 2)^*$ -RC(X), $(1, 2)^*$ -SO(X), $(1, 2)^*$ - α O(X), $(1, 2)^*$ - α O(X), $(1, 2)^*$ - α O(X), $(1, 2)^*$ - α O(X).

Remark 2.5. It is evident that any $\mathfrak{I}_{1,2}$ -open set of X is an $(1, 2)^*$ - α -open and each $(1, 2)^*$ - α -open set of X is $(1, 2)^*$ -semi-open but the converses are not true.

Remark 2.6. We have the following implications for the properties of subsets [5]:

 $regular \left(\ 1 \ , \ 2 \ \right)^* \text{-open} \ \Rightarrow \ \left(1, \ 2 \right)^* \text{-}\alpha \text{-open} \ \Rightarrow \ \left(1, \ 2 \right)^* \text{-}\alpha \text{-open} \ \Rightarrow \ \left(1, \ 2 \right)^* \text{-}\eta \text{-open}$

Where none of the implications is reversible.

3. (1, 2)*-GENERALIZED η-CLOSED SETS IN BITOPOLOGICAL SPACES

Definition 3.1. A subset A of a bitopological space $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is called

- (i) $(1, 2)^*$ -generalized closed (briefly $(1, 2)^*$ -g-closed) [10] if $\mathfrak{I}_{1,2}$ -cl(A) \subset U whenever A \subset U and U is $\mathfrak{I}_{1,2}$ -open in X.
- (ii) regular $(1, 2)^*$ generalized closed (briefly $(1, 2)^*$ -rg-closed) [3] if $\mathfrak{I}_{1,2}$ -cl(A) \subset U whenever A \subset U and U \in $(1, 2)^*$ -RO(X).
- (iii) $(1, 2)^*$ -weakly closed (briefly $(1, 2)^*$ -w-closed) [2] if $\mathfrak{T}_{1,2}$ -cl(A) \subset U whenever A \subset U and U is $(1, 2)^*$ -semi-open in X.
- (iv) $(1, 2)^*$ - α -generalized closed (briefly $(1, 2)^*$ - α g-closed) [10] if $(1, 2)^*$ - α -cl(A) \subset U whenever A \subset U and U is $\mathfrak{I}_{1,2}$ -open in X.
- (v) regular $(1, 2)^*$ -generalized α -closed (briefly $(1, 2)^*$ -rg α -closed) [11] if $(1, 2)^*$ - α -cl(A) \subset U whenever A \subset U and U \in $(1, 2)^*$ -RO(X).
- (vi) $(1, 2)^*$ -generalized semi-closed (briefly $(1, 2)^*$ -gs-closed) [10] if $(1, 2)^*$ -s-cl(A) \subset U whenever A \subset U and U is $\mathfrak{I}_{1,2}$ -open in X.
- (vii) regular $(1, 2)^*$ -generalized semi-closed (briefly $(1, 2)^*$ -rgs-closed) [**10**] if $(1, 2)^*$ -s-cl(A) \subset U whenever A \subset U and U \in $(1, 2)^*$ -RO(X).

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 10 | October 2022

- Peer Reviewed Journal

(viii) $(1, 2)^*$ -generalized η -closed (briefly $(1, 2)^*$ -g η -closed) [6] if $(1, 2)^*$ - η -cl(A) \subset U whenever A \subset U and U is $\mathfrak{I}_{1,2}$ -open in X.

(ix) regular $(1, 2)^*$ -generalized η -closed (briefly $(1, 2)^*$ -rg η -closed) if $(1, 2)^*$ - η -cl $(A) \subset U$ whenever $A \subset U$ and $U \in (1, 2)^*$ -RO(X).

The complement of a $(1, 2)^*$ -g-closed (resp. $(1, 2)^*$ -rg-closed, $(1, 2)^*$ -w-closed, $(1, 2)^*$ -ag-closed, $(1, 2)^*$ -rg-closed, $(1, 2)^*$ -g-closed, $(1, 2)^*$ -g-closed, $(1, 2)^*$ -g-open (resp. $(1, 2)^*$ -rg-open, $(1, 2)^*$ -g-open, $(1, 2)^*$ -g-open,

We denote the set of all $(1, 2)^*$ -rg η -closed sets in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ by $(1, 2)^*$ -rg η -C(X).

Theorem 3.2. Every $\mathfrak{I}_{1,2}$ -closed set is rg η -closed.

Proof. Let A be any $\mathfrak{I}_{1,2}$ -closed set in $(X,\mathfrak{I}_1,\mathfrak{I}_2)$ and $A \subset U$, where $U \in (1,2)^*$ -RO(X). So $(1,2)^*$ -cl(A) = A . Since every $\mathfrak{I}_{1,2}$ -closed set is $(1,2)^*$ - η -closed, so $(1,2)^*$ - η -cl(A) $\subset (1,2)^*$ -cl(A) = A. Therefore, $(1,2)^*$ - η -cl(A) $\subset A \subset U$. Hence A is $(1,2)^*$ -rg η -closed set.

Theorem 3.3. Every $(1, 2)^*$ -g-closed set is $(1, 2)^*$ -rg η -closed.

Proof. Let A be any $(1, 2)^*$ -g-closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ then $(1, 2)^*$ -cl(A) \subset U whenever A \subset U, where U \in $(1, 2)^*$ -RO(X), since every regular $(1, 2)^*$ -open set is $\mathfrak{T}_{1,2}$ -open. So $(1, 2)^*$ - η -cl(A) \subset $(1, 2)^*$ -cl(A) \subset U. Therefore $(1, 2)^*$ - η -cl(A) \subset U. Hence A is $(1, 2)^*$ -rg η -closed set.

Theorem 3.4. Every $(1, 2)^*$ -rg-closed set is $(1, 2)^*$ -rg η -closed.

Proof. Let A be any $(1, 2)^*$ -g-closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ then $(1, 2)^*$ -cl(A) \subset U whenever A \subset U, where U \in (1, 2)*-RO(X). So $(1, 2)^*$ - η -cl(A) \subset (1, 2)*-cl(A) \subset U. Therefore $(1, 2)^*$ - η -cl(A) \subset U. Hence A is $(1, 2)^*$ -rg η -closed set.

Theorem 3.5. Every $(1, 2)^*$ - α -closed set is $(1, 2)^*$ -rg η -closed.

Proof. Let A be any $(1, 2)^*$ - α -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ and $A \subset U$, where $U \in (1, 2)^*$ -RO(X). Since every $(1, 2)^*$ - α -closed set is $(1, 2)^*$ - η -closed, so $(1, 2)^*$ - η -cl(A) $\subset (1, 2)^*$ - α -cl(A) = A. Therefore $(1, 2)^*$ - η -cl(A) \subset A \subset U. Hence A is $(1, 2)^*$ -rg η -closed set.

Theorem 3.6. Every $(1, 2)^*$ - α g-closed set is $(1, 2)^*$ -rg η -closed.

Proof. Let A be any $(1, 2)^*$ - αg -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ then $(1, 2)^*$ - α -cl(A) \subset U whenever A \subset U, where U \in $(1, 2)^*$ -RO(X), since every regular $(1, 2)^*$ -open set is $\mathfrak{T}_{1,2}$ -open. Given that A is $(1, 2)^*$ - αg -closed set such that $(1, 2)^*$ - α -cl(A) \subset U. But we have $(1, 2)^*$ - η -cl(A) \subset U. Therefore $(1, 2)^*$ - η -cl(A) \subset U. Hence A is $(1, 2)^*$ -rg η -closed set.

Theorem 3.7. Every $(1, 2)^*$ -rg α -closed set is $(1, 2)^*$ -rg η -closed.

Proof. Let A be any $(1, 2)^*$ - αg -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ then $(1, 2)^*$ - α -cl(A) \subset U whenever A \subset U, where U \in $(1, 2)^*$ -RO(X). Given that A is $(1, 2)^*$ - αg -closed set such that $(1, 2)^*$ - α -cl(A) \subset U. But we have $(1, 2)^*$ - η -cl(A) \subset U. Therefore $(1, 2)^*$ - η -cl(A) \subset U. Hence A is $(1, 2)^*$ -rg η -closed set.

Theorem 3.8. Every $(1, 2)^*$ -semi-closed set is $(1, 2)^*$ -rg η -closed.

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 10 | October 2022

- Peer Reviewed Journal

Proof. Let A be any $(1, 2)^*$ -semi-closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ and $A \subset U$, where $U \in (1, 2)^*$ -RO(X). Since every $(1, 2)^*$ -semi-closed set is $(1, 2)^*$ - η -closed, so $(1, 2)^*$ - η -cl(A) $\subset (1, 2)^*$ -s-cl(A) = A. Therefore $(1, 2)^*$ - η -cl(A) $\subset A \subset U$. Hence A is $(1, 2)^*$ -rg η -closed set.

Theorem 3.9. Every $(1, 2)^*$ -gs-closed set is $(1, 2)^*$ -rg η -closed.

Proof. Let A be any $(1, 2)^*$ -gs-closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ then $(1, 2)^*$ -s-cl(A) \subset U whenever A \subset U, where U \in $(1, 2)^*$ -RO(X), since every regular $(1, 2)^*$ -open set is $\mathfrak{T}_{1,2}$ -open. Given that A is $(1, 2)^*$ -gs-closed set such that $(1, 2)^*$ -s-cl(A) \subset U. But we have $(1, 2)^*$ - η -cl(A) \subset U. Therefore $(1, 2)^*$ - η -cl(A) \subset U. Hence A is $(1, 2)^*$ -rg η -closed set.

Theorem 3.10. Every $(1, 2)^*$ -rgs-closed set is $(1, 2)^*$ -rg η -closed.

Proof. Let A be any $(1, 2)^*$ -rgs-closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ then $(1, 2)^*$ -s-cl(A) \subset U whenever A \subset U, where U \in $(1, 2)^*$ -RO(X). Given that A is $(1, 2)^*$ -gs-closed set such that $(1, 2)^*$ -s-cl(A) \subset U. But we have $(1, 2)^*$ - η -cl(A) \subset $(1, 2)^*$ -s-cl(A) \subset U. Therefore $(1, 2)^*$ - η -cl(A) \subset U. Hence A is $(1, 2)^*$ -rg η -closed set.

Theorem 3.11. Every $(1, 2)^*$ - η -closed set is $(1, 2)^*$ -rg η -closed.

Proof. Let A be any $(1, 2)^*$ - η -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ and $A \subset U$, where $U \in (1, 2)^*$ -RO(X). Since A is $(1, 2)^*$ - η -closed. Therefore $(1, 2)^*$ - η -cl(A) = $A \subset U$. Hence A is $(1, 2)^*$ -rg η -closed set.

Theorem 3.12. Every $(1, 2)^*$ -g η -closed set is $(1, 2)^*$ -rg η -closed.

Proof. Let A be any $(1, 2)^*$ -g η -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ then $(1, 2)^*$ - η -cl $(A) \subset U$ whenever $A \subset U$, where $U \in (1, 2)^*$ -RO(X), since every regular $(1, 2)^*$ -open set is $\mathfrak{T}_{1,2}$ -open. Given that A is $(1, 2)^*$ -g η -closed set such that $(1, 2)^*$ - η -cl $(A) \subset U$. Therefore $(1, 2)^*$ - η -cl $(A) \subset U$. Hence A is $(1, 2)^*$ -rg η -closed set.

Theorem 3.13. Every $(1, 2)^*$ -w-closed set is $(1, 2)^*$ -rg η -closed.

Proof. Let A be any $(1, 2)^*$ -w-closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ then $(1, 2)^*$ -cl(A) \subset U whenever A \subset U, where U \in (1, 2)*-RO(X), since every regular $(1, 2)^*$ -open set is $(1, 2)^*$ -semi-open. So $(1, 2)^*$ - η -cl(A) \subset (1, 2)*-cl(A) \subset U. Therefore $(1, 2)^*$ - η -cl(A) \subset U. Hence A is $(1, 2)^*$ -rg η -closed set.

Remark 3.14. We have the following implications for the properties of subsets:

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 10 | October 2022

- Peer Reviewed Journal

Where none of the implications is reversible as can be seen from the following examples:

Example 3.15. Let $X = \{a, b, c, d\}$ with $\mathfrak{I}_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$ and $\mathfrak{I}_2 = \{\phi, X, \{c\}, \{a, c, d\}\}$.

Then

- (i) $\mathfrak{I}_{1,2}$ -closed sets : \emptyset , X, $\{a\}$, $\{b\}$, $\{d\}$, $\{a,d\}$, $\{b,d\}$, $\{c,d\}$, $\{a,b,d\}$, $\{a,c,d\}$, $\{b,c,d\}$.
- (ii) (1, 2)*-g-closed sets : ϕ , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- (iii) $(1, 2)^*$ -rg-closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{d\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (iv) $(1, 2)^*$ - α -closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{d\}$, $\{a, d\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (v) $(1, 2)^*$ -ag-closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{d\}$, $\{a, d\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (vi) $(1, 2)^*$ -rg α -closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{d\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (vii) $(1, 2)^*$ -semi-closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, d\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (viii) $(1, 2)^*$ -gs-closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, d\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (ix) $(1, 2)^*$ -rgs-closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- $(x) (1, 2)^* \eta$ -closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, d\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- $(xi) \ (1,2)^* g\eta closed \ sets : \phi, X, \ \{a\}, \ \{b\}, \ \{c\}, \ \{d\}, \ \{a,b\}, \ \{a,d\}, \ \{b,d\}, \ \{c,d\}, \ \{a,c,d\}, \ \{b,c,d\}.$
- $(xii) (1, 2)^*$ -rg η -closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- $(xiii) \ (1,2)^* w closed \ sets : \phi, X, \{a\}, \{b\}, \{d\}, \{a,d\}, \{b,d\}, \{c,d\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}.$

Example 3.16. Let $X = \{a, b, c\}$ with $\mathfrak{T}_1 = \{\phi, X, \{b\}\}$ and $\mathfrak{T}_2 = \{\phi, X, \{c\}\}$. Then

- (i) $\mathfrak{I}_{1,2}\text{-closed sets}: \phi, X, \{a\}, \{a,b\}, \{a,c\}.$
- (ii) $(1, 2)^*$ -g-closed sets : ϕ , X, $\{a\}$, $\{a, b\}$, $\{a, c\}$.
- (iii) $(1, 2)^*$ -rg-closed sets : ϕ , X, $\{a\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$.
- (iv) $(1, 2)^*$ - α -closed sets : ϕ , X, $\{a\}$, $\{a, b\}$, $\{a, c\}$.
- (v) $(1, 2)^*$ -ag-closed sets : ϕ , X, $\{a\}$, $\{a, b\}$, $\{a, c\}$.
- (vi) $(1, 2)^*$ -rg α -closed sets : ϕ , X, $\{a\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$.
- (vii) $(1, 2)^*$ -semi-closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$.
- (viii) $(1, 2)^*$ -gs-closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$.
- (ix) $(1, 2)^*$ -rgs-closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$.
- (x) $(1, 2)^*$ - η -closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$.
- (xi) $(1, 2)^*$ -g η -closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$.
- $(xii) \ (1,2)^* rg\eta closed \ sets : \phi, X, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}.$
- (xiii) $(1, 2)^*$ -w-closed sets : ϕ , X, $\{a\}$, $\{a, b\}$, $\{a, c\}$.

Example 3.17. Let $X = \{a, b, c, d\}$ with $\mathfrak{T}_1 = \{\phi, X, \{a\}\}$ and $\mathfrak{T}_2 = \{\phi, X, \{b\}, \{a, b, c\}\}$. Then (i) $\mathfrak{T}_{1.2}$ -closed sets : ϕ , X, $\{d\}$, $\{c, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 10 | October 2022

- Peer Reviewed Journal

- $(ii) \ (1, \, 2)^* \text{-g-closed sets} : \phi, \, X, \, \{d\}, \, \{a, \, d\}, \, \{b, \, d\}, \, \{c, \, d\}, \, \{a, \, b, \, d\}, \, \{a, \, c, \, d\}, \, \{b, \, c, \, d\}.$
- (iii) $(1, 2)^*$ -rg-closed sets : ϕ , X, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (iv) $(1, 2)^*$ - α -closed sets : ϕ , X, $\{c\}$, $\{d\}$, $\{c, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (v) $(1, 2)^*$ - α g-closed sets : ϕ , X, {c}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- (vi) $(1, 2)^*$ -rg α -closed sets : ϕ , X, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (vii) $(1, 2)^*$ -semi-closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (viii) $(1, 2)^*$ -gs-closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (ix) $(1, 2)^*$ -rgs-closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- $(x) (1, 2)^* \eta$ -closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (xi) $(1, 2)^*$ -g η -closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (xii) $(1, 2)^*$ -rg η -closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (xiii) $(1, 2)^*$ -w-closed sets : ϕ , X, $\{d\}$, $\{a, d\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

Example 3.18. Let $X = \{a, b, c, d\}$ with $\mathfrak{I}_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $\mathfrak{I}_2 = \{\phi, X, \{a, b, d\}\}$. Then (i) $\mathfrak{I}_{1,2}$ -closed sets : ϕ , X, $\{c\}$, $\{d\}$, $\{c, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

- (ii) $(1, 2)^*$ -g-closed sets : ϕ , X, $\{c\}$, $\{d\}$, $\{c, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (iii) $(1, 2)^*$ -rg-closed sets : ϕ , X, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (iv) $(1, 2)^*$ - α -closed sets : ϕ , X, $\{c\}$, $\{d\}$, $\{c, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (v) $(1, 2)^*$ - αg -closed sets : ϕ , X, $\{c\}$, $\{d\}$, $\{c, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (vi) $(1, 2)^*$ -rg α -closed sets : ϕ , X, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- $(vii) \ (1,2)^* semi-closed \ sets : \phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}.$
- (viii) $(1, 2)^*$ -gs-closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (ix) $(1, 2)^*$ -rgs-closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (x) $(1, 2)^*$ - η -closed sets : ϕ , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.
- (xi) $(1, 2)^*$ -g η -closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, c\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (xii) $(1, 2)^*$ -rg η -closed sets : ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
- (xiii) $(1, 2)^*$ -w-closed sets : ϕ , X, $\{c\}$, $\{d\}$, $\{c, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

4. CHARACTERIZATIONS OF (1, 2)*-GENERALIZED η-CLOSED SETS

Theorem 4.1. The union of two $(1, 2)^*$ -rg η -closed subsets of $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is also $(1, 2)^*$ -rg η -closed subset of $(X, \mathfrak{I}_1, \mathfrak{I}_2)$.

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 10 | October 2022

- Peer Reviewed Journal

Proof. Assume that A and B are $(1, 2)^*$ -rg η -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$. Let U be regular $(1, 2)^*$ -open set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ such that $A \cup B \subset U$, then $A \subset U$ and $B \subset U$. Since A and B are $(1, 2)^*$ -rg η -closed such that $(1, 2)^*$ - η -cl $(A) \subset U$ and $(1, 2)^*$ - η -cl $(B) \subset U$. Hence $(1, 2)^*$ - η -cl $(A \cup B) = (1, 2)^*$ - η -cl $(A) \cup (1, 2)^*$ - η -cl $(B) \subset U$. That is $(1, 2)^*$ - η -cl $(A \cup B) \subset U$. Therefore $A \cup B$ is $(1, 2)^*$ -rg η -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$.

Theorem 4.2. The intersection of two $(1, 2)^*$ -rg η -closed-sets in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is also a $(1, 2)^*$ -rg η -closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$.

Proof. Easy to proof.

Theorem 4.3. If a subset A is $(1, 2)^*$ -rg η -closed, then $(1, 2)^*$ - η -cl(A) – A does not contain any non-empty regular $(1, 2)^*$ -closed set.

Proof. Suppose that A is $(1,2)^*$ -rg η -closed. Let F be a regular $(1,2)^*$ -closed subset of $(1,2)^*$ - η -cl(A) — A. Then $F \subset [(1,2)^*-\eta\text{-cl}(A) \cap (X-A)]$ and so $A \subset [X-F]$. But A is $(1,2)^*$ -rg η -closed. Therefore $(1,2)^*$ - η -cl(A) $\subset [X-F]$. Consequently, $F \subset [X-(1,2)^*-\eta\text{-cl}(A)]$. We already have $F \subset (1,2)^*-\eta\text{-cl}(A)$. Hence $F \subset [(1,2)^*-\eta\text{-cl}(A)] \cap X - (1,2)^*-\eta\text{-cl}(A)] = \phi$. Thus $F = \phi$. Therefore $(1,2)^*-\eta\text{-cl}(A) - A$ contains no non-empty regular $(1,2)^*$ -closed set.

Example 4.4. The converse of Theorem 4.3 is not true.

Refer to **Example 3.18**. Let $A = \{a, b, c\}$. We have that $(1, 2)^* - \eta - cl(A) - A = X - \{a, b, c\} = \{d\}$ does not contain any non-empty regular $(1, 2)^*$ -closed set. However, A is $(1, 2)^*$ -rg η -closed in X.

Theorem 4.5. Let A be $(1, 2)^*$ -rg η -closed set. Then A is regular $(1, 2)^*$ -closed if and only if $[(1, 2)^*$ -cl $((1, 2)^*$ -int(A)) – A] is regular $(1, 2)^*$ -closed.

Proof. Let A be a $(1, 2)^*$ -rg η -closed. If A is regular $(1, 2)^*$ -closed, then $[(1, 2)^*$ -cl $((1, 2)^*$ -int $(A)) - A] = \phi$. We know ϕ is always regular $(1, 2)^*$ -closed. Therefore $[(1, 2)^*$ -cl $((1, 2)^*$ -int(A)) - A] is regular $(1, 2)^*$ -closed.

Conversely, suppose that $[(1, 2)^*-\text{cl}((1, 2)^*-\text{int}(A)) - A]$ is regular $(1, 2)^*-\text{closed}$. Since A is $(1, 2)^*-\text{rg}\eta$ -closed, $[(1, 2)^*-\text{cl}(A) - A]$ contains the regular $(1, 2)^*-\text{cl}((1, 2)^*-\text{cl}((1, 2)^*-\text{int}(A)) - A]$. By **Theorem 4.3**, $[(1, 2)^*-\text{cl}((1, 2)^*-\text{int}(A)) \setminus A] = \emptyset$. Hence $(1, 2)^*-\text{cl}((1, 2)^*-\text{int}(A)) = A$. Therefore A is regular $(1, 2)^*-\text{closed}$.

Remark 4.6. The converse of **Theorem 4.4** is not true as per the following example.

Example 4.7. Let $X = \{a, b, c, d, e\}$ with $\mathfrak{I}_1 = \{\phi, X, \{a, b\}, \{a, b, c, d\}\}$ and $\mathfrak{I}_2 = \{\phi, X, \{c, d\}, \{a, b, c, d\}\}$. If we consider $A = \{a, c\}$, then $(1, 2)^* - \eta - cl(A) - A = X - \{a, c\} = \{b, d, e\}$ does not contain any non-empty regular $(1, 2)^*$ -closed set. However A is $(1, 2)^*$ -rg η -closed.

Theorem 4.8. For an element $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$, the set $(X, \mathfrak{I}_1, \mathfrak{I}_2) - \{x\}$ is $(1, 2)^*$ -rg η -closed or regular $(1, 2)^*$ -open.

Proof. Suppose $(X, \mathfrak{I}_1, \mathfrak{I}_2) - \{x\}$ is not regular $(1, 2)^*$ -open set. Then $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is the only regular $(1, 2)^*$ -open set containing $(X, \mathfrak{I}_1, \mathfrak{I}_2) - \{x\}$. This implies $(1, 2)^*$ - η -cl $((X, \mathfrak{I}_1, \mathfrak{I}_2) - \{x\}) \subset (X, \mathfrak{I}_1, \mathfrak{I}_2)$. Hence $(X, \mathfrak{I}_1, \mathfrak{I}_2) - \{x\}$ is $(1, 2)^*$ -rg η -closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$.

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 10 | October 2022

- Peer Reviewed Journal

Theorem 4.9. Let A be a $(1, 2)^*$ -rg η -closed subset of X. If $A \subset B \subset (1, 2)^*$ - η -cl(A), then B is also $(1, 2)^*$ -rg η -closed in X.

Proof. Let $U \in (1, 2)^*$ -rg η -O(X) with $B \subset U$. Then $A \subset U$. Since A is $(1, 2)^*$ -rg η -closed, $(1, 2)^*$ - η -cl(A) $\subset U$. Also, since $B \subset (1, 2)^*$ - η -cl(A), $(1, 2)^*$ - η -cl(B) $\subset (1, 2)^*$ - η -cl(A) $\subset U$. Hence B is also $(1, 2)^*$ -rg η -closed subset of X.

Remark 4.10. The converse of the **Theorem 4.9** need not be true in general. Consider the bitopological space $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ where $X = \{a, b, c, d, e\}$ with topology $\mathfrak{I}_1 = \{\phi, \{a, b\}, \{a, b, c, d\}, X\}, \mathfrak{I}_2 = \{\phi, \{c, d\}, \{a, b, c, d\}, X\}$, Let $A = \{b\}$ and $B = \{b, c\}$. Then A and B are $(1, 2)^*$ -rg η -closed sets in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ but $A \subset B$ is not subset in $(1, 2)^*$ - η -cl $(A) = \{a, b\}$.

Theorem 4.11. Let A be a $(1, 2)^*$ -rg η -closed in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$. Then A is $(1, 2)^*$ - η -closed if and only if $(1, 2)^*$ - η -cl(A) – A is a regular $(1, 2)^*$ -open.

Proof. Suppose A is a $(1, 2)^*$ - η -closed in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$. Then $(1, 2)^*$ - η -cl(A) = A and so $(1, 2)^*$ - η cl $(A) - A = \phi$, which is regular $(1, 2)^*$ -open in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$.

Conversely, suppose $(1, 2)^* - \eta - cl(A) - A$ is a regular $(1, 2)^*$ -open set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$. Since A is $(1, 2)^*$ -rg η -closed, by **Theorem 4.3** $(1, 2)^* - \eta - cl(A) - A$ does not contain any nonempty regular $(1, 2)^*$ -open in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$. Then $(1, 2)^* - \eta - cl(A) - A = \phi$. Hence A is $(1, 2)^* - \eta$ -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$.

Theorem 4.12. If A is regular $(1, 2)^*$ -open and $(1, 2)^*$ -rg η -closed, then A is $(1, 2)^*$ -rg η -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$. **Proof**. Let U be any regular $(1, 2)^*$ -open set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ such that $A \subset U$. Since A is regular $(1, 2)^*$ -open and $(1, 2)^*$ -rg η -closed, we have $(1, 2)^*$ - η -cl $(A) \subset A$. Then $(1, 2)^*$ - η -cl $(A) \subset A \subset U$. Hence A is $(1, 2)^*$ rg η -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$.

Theorem 4.13. If a subset A of bitopological space $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is both regular $(1, 2)^*$ -open and $(1, 2)^*$ -rg η -closed, then it is $(1, 2)^*$ - η -closed.

Proof. Suppose a subset A of bitopological space $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is both regular $(1, 2)^*$ -open and $(1, 2)^*$ -rg η -closed. Now $A \subset A$. Then $(1, 2)^*$ - η -cl $(A) \subset A$. Hence A is $(1, 2)^*$ - η -closed.

Corollary 4.14. Let A be regular $(1, 2)^*$ -open and $(1, 2)^*$ -rg η -closed subset in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$. Suppose that F is $(1, 2)^*$ - η -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$. Then $A \cap F$ is an $(1, 2)^*$ -rg η -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$.

Proof. Let A be a regular $(1, 2)^*$ -open and $(1, 2)^*$ -rg η -closed subset in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ and F be closed. By **Theorem 4.13**, A is $(1, 2)^*$ - η -closed. So A \cap F is a $(1, 2)^*$ - η -closed and hence A \cap F is $(1, 2)^*$ -rg η -closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$.

Theorem 4.15 [6]. If A is an open and S is $(1, 2)^*$ - η -open in bitopological space $(X, \mathfrak{T}_1, \mathfrak{T}_2)$, then $A \cap S$ is $(1, 2)^*$ - η -open in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$.

Theorem 4.16. If A is both open and $(1, 2)^*$ -g-closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$, then it is $(1, 2)^*$ -rg η -closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$.

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 10 | October 2022

- Peer Reviewed Journal

Proof. Let A be an open and $(1, 2)^*$ -g-closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$. Let $A \subset U$ and let U be a regular $(1, 2)^*$ -open set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$. Now $A \subset A$. By hypothesis $(1, 2)^*$ - η -cl(A) \subset A. That is $(1, 2)^*$ - η -cl(A) \subset U. Thus A is $(1, 2)^*$ -rg η -closed in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$.

5. (1, 2)*-RGη-OPEN SETS AND (1, 2)*-RGη-NEIGHBORHOOD

In this section, we introduce $(1, 2)^*$ -rg η -open sets in bitopological spaces and study some basic properties of $(1, 2)^*$ -rg η -open sets. Also, we introduce $(1, 2)^*$ -rg η -neighborhood (shortly $(1, 2)^*$ -g η -nbhd in bitopological spaces by using the notion of $(1, 2)^*$ -rg η -open sets. We prove that every nbhd of x in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is $(1, 2)^*$ -rg η -nbhd of x but not conversely.

Definition 5.1. A subset A in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is called regular $(1, 2)^*$ -generalized η-open (briefly, $(1, 2)^*$ -rgη-open) in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ if A^c is $(1, 2)^*$ -rgη-closed in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$. We denote the family of all $(1, 2)^*$ -rgη-open sets in X by $(1, 2)^*$ -rgη-O(X).

Theorem 5.2. A set A is $(1, 2)^*$ -rg η -open if and only if the following condition holds:

 $F \subset (1, 2)^*$ - η -int(A) whenever F is regular $(1, 2)^*$ -closed and $F \subset A$.

Proof. Suppose the condition holds. Put [X-A]=B. Suppose that $B\subset U$ where $U\in (1,2)^*-R-O(X)$. Now $X-A\subset U$ implies $F=[X-U]\subset A$ and F is regular $(1,2)^*$ -closed, which implies $F\subset (1,2)^*-\eta-int(A)$. Also $F\subset (1,2)^*-\eta-int(A)$ implies $[X-(1,2)^*-\eta-int(A)]\subset [X-F]=U$. This implies $[X-((1,2)^*-\eta-int(X-B))]\subset U$. Therefore $[X-((1,2)^*-\eta-int(X-B))]\subset U$ or equivalently $(1,2)^*-\eta-cl(B)\subset U$. Thus B is $(1,2)^*-rg\eta$ -closed. Hence A is $(1,2)^*-rg\eta$ -open.

Conversely, suppose that A is $(1, 2)^*$ -rg η -open, F \subset A and F is regular $(1, 2)^*$ -closed. Then [X - F] is regular $(1, 2)^*$ -open. Then $(X - A) \subset (X - F)$. Hence $(1, 2)^*$ - η -cl $(X - A) \subset (X - F)$ because (X - A) is $(1, 2)^*$ -rg η -closed. Therefore $F \subset (X - (1, 2)^*$ - η -cl $(X - A)) = (1, 2)^*$ - η -int(A).

Definition 5.3. Let $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ be a bitopological space and let $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$. A subset N of $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is said to be a $(1, 2)^*$ -rg η -nbhd of x iff there exists a $(1, 2)^*$ -rg η -open set G such that $x \in G \subset N$.

Definition 5.4. A subset N of a bitopological space $(X, \mathfrak{I}_1, \mathfrak{I}_2)$, is called a $(\mathbf{1}, \mathbf{2})^*$ -rg η -nbhd of $A \subset (X, \mathfrak{I}_1, \mathfrak{I}_2)$ iff there exists a $(1, 2)^*$ -rg η -open set G such that $A \subset G \subset N$.

Theorem 5.5. Every nbhd N of $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$ is a $(1, 2)^*$ -rg η -nbhd of $(X, \mathfrak{I}_1, \mathfrak{I}_2)$.

Proof. Let N be a nbhd of point $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$. To prove that N is a $(1, 2)^*$ -rg η -nbhd of x. By definition of nbhd, there exists an open set G such that $x \in G \subset N$. As every open set is $(1, 2)^*$ -rg η -open set G such that $x \in G \subset N$. Hence N is $(1, 2)^*$ -rg η -nbhd of x.

Remark 5.6. In general, a $(1, 2)^*$ -rg η -nbhd N of $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$ need not be a nbhd of x in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$, as seen from the following example.

Example 5.7. Let $X = \{a, b, c, d\}$ with topology $\mathfrak{I}_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\mathfrak{I}_2 = \{\phi, \{a, b, d\}, X\}$ Then $(1, 2)^*$ -rg η -O(X) = $\{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a,$

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 10 | October 2022

- Peer Reviewed Journal

b, d}, {a, c, d}, {b, c, d}}. The set {b, c} is $(1, 2)^*$ -rg η -nbhd of the point b, there exists an $(1, 2)^*$ -rg η -open set {b} is such that $b \in \{b\} \subset \{b, c\}$. However, the set {b, c} is not a nbhd of the point b, since no open set G exists such that $b \in G \subset \{a, c\}$.

Theorem 5.8. If a subset N of a space $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is $(1, 2)^*$ -rg η -open, then N is a $(1, 2)^*$ -rg η -nbhd of each of its points.

Proof. Suppose N is $(1, 2)^*$ -rg η -open. Let $x \in N$. We claim that N is $(1, 2)^*$ -rg η -nbhd of x. For N is a $(1, 2)^*$ -rg η -open set such that $x \in N \subset N$. Since x is an arbitrary point of N, it follows that N is a $(1, 2)^*$ -rg η -nbhd of each of its points.

Definition 5.9. Let x be a point in a space $(X, \mathfrak{I}_1, \mathfrak{I}_2)$. The set of all $(1, 2)^*$ -rg η -nbhd of x is called the $(1, 2)^*$ -rg η -nbhd system at x, and is denoted by $(1, 2)^*$ -rg η -N(x).

Theorem 5.10. Let $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ be a bitopological space and for each $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$. Let $(1, 2)^*$ - $rg\eta$ -N(x) be the collection of all $(1, 2)^*$ - $rg\eta$ -nbhds of x. Then we have the following results.

- (i) $\forall x \in (X, \mathfrak{I}_1, \mathfrak{I}_2), (1, 2)^* rg\eta N(x) \neq \emptyset.$
- (ii) $N \in (1, 2)^*$ -rg η -N(x) \Rightarrow x \in N.
- (iii) $N \in (1, 2)^*$ -rg η -N(x), $M \supset N \Rightarrow M \in (1, 2)^*$ -rg η -N(x).
- (iv) $N \in (1, 2)^*$ -rg η -N(x), $M \in (1, 2)^*$ -rg η -N(x) $\Rightarrow N \cap M \in (1, 2)^*$ -rg η -N(x).
- (v) $N \in (1, 2)^*$ -rg η -N(x) \Rightarrow there exists $M \in (1, 2)^*$ -rg η -N(x) such that $M \subset N$ and $M \in (1, 2)^*$ -rg η -N(y) for every $y \in M$.
- **Proof.** (i) Since $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ is a $(1, 2)^*$ -rg η -open set, it is a $(1, 2)^*$ -rg η -nbhd of every $x \in (X, \mathfrak{T}_1, \mathfrak{T}_2)$. Hence there exists at least one $(1, 2)^*$ -rg η -nbhd (namely $(X, \mathfrak{T}_1, \mathfrak{T}_2)$) for each $x \in (X, \mathfrak{T}_1, \mathfrak{T}_2)$. Hence $(1, 2)^*$ -rg η -N(x) = ϕ for every $x \in (X, \mathfrak{T}_1, \mathfrak{T}_2)$.
- (ii) If $N \in (1, 2)^*$ -rg η -N(x), then N is a $(1, 2)^*$ -rg η -nbhd of x. So by definition of $(1, 2)^*$ -rg η -nbhd, $x \in N$.
- (iii) Let $N \in (1,2)^*$ -rg η -N(x) and $M \supset N$. Then there is a $(1,2)^*$ -rg η -open set G such that $x \in G \subset N$. Since $N \subset M$, $x \in G \subset M$ and so M is $(1,2)^*$ -rg η -nbhd of x. Hence $M \in (1,2)^*$ -rg η -N (x).
- (iv) Let $N \in (1,2)^*$ -rg η -N(x) and $M \in (1,2)^*$ -rg η -N(x). Then by definition of $(1,2)^*$ -rg η -nbhd. Hence $x \in G_1 \cap G_2 \subset N \cap M \Rightarrow (1)$. Since $G_1 \cap G_2$ is a $(1,2)^*$ -rg η -open set, (being the intersection of two $(1,2)^*$ -rg η -open sets), it follows from (1) that $N \cap M$ is a $(1,2)^*$ -rg η -nbhd of x. Hence $N \cap M \in (1,2)^*$ -rg η -N(x).
- (v) If $N \in (1, 2)^*$ -rg η -N(x), then there exists a $(1, 2)^*$ -rg η -open set M such that $x \in M \subset N$. Since M is a $(1, 2)^*$ -rg η -open set, it is $(1, 2)^*$ -rg η -nbhd of each of its points. Therefore $M \in (1, 2)^*$ -rg η -N(y) for every $y \in M$.

6. CONCLUSION

In this paper, we introduce regular $(1, 2)^*$ -generalized η -closed sets and obtain the relationships among some existing closed sets like $(1, 2)^*$ -semi- closed, $(1, 2)^*$ - α - closed and $(1, 2)^*$ - η - closed sets and their generalizations. Also we study some basic properties of $(1, 2)^*$ -rg η -open sets. Further, we introduce $(1, 2)^*$ -rg η -neighbourhood and discuss some properties of $(1, 2)^*$ -rg η -neighbourhood. The regular $(1, 2)^*$ -generalized η -closed sets can be used to derive a new decomposition of unity, closed map and open map, homeomorphism,

SJIF Impact Factor 2022: 8.197 ISI I.F. Value: 1.241 Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 10 | October 2022 - Peer Reviewed Journal

closure and interior and new separation axioms. This idea can be extended to ordered topological and fuzzy topological spaces.

REFERENCES

- 1. M. Datta, Projective Bitopological Spaces, J. Austral. Math. Soc., 13(1972), 327-334.
- 2. Z. Duszynski, M. Jeyaraman, M. S. Joseph. O. Ravi and M. L. Thivagar, A new generalization of closed sets in bitopology, South Asian Jour. of Mathematics, Vol. 4, Issue 5, (2014), 215-224.
- 3. K. Kayathri, O. Ravi, M. L. Thivagar and M. Joseph Israel, Mildly (1, 2)*-normal spaces and some bitopological functions, No 1, 135(2010), 1-13.
- 4. J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
- 5. H. Kumar, On (1, 2)*-η-open sets in bitopological spaces, Jour. of Emerging Tech. and Innov. Res., Vol. 9, Issue 8, (2022), c194-c198.
- H. Kumar, (1, 2)*-generalized η-closed sets in bitopological spaces, EPRA Int. Jour. of Multidisciplinary Research (IJMR)., Vol. 8, Issue 9, (2022), 319-326.
- 7. O. Ravi, M. L. Thivagar, On stronger forms of (1, 2)*-quotient mappings in bitopological spaces. Internat. J. Math. Game Theory and Algebra 14 (2004), 481-492.
- 8. O. Ravi, M. Lellis Thivagar and Erdal Ekici, On (1, 2)*-sets and decompositions of bitopological (1, 2)*-continous mappings, Kochi J. Math. 3 (2008), 181-189
- 9. O. Ravi, M. L. Thivagar, Remarks on λ -irresolute functions via $(1, 2)^*$ -sets, (submitted).
- 10. O. Ravi, M. L. Thivagar and Jin Jinli, Remarks on extensions of $(1, 2)^*$ -g-closed mappings in bitopology, (submitted).
- 11. D. Sreeja and P. Juane Sinthya, Malaya J. Mat. S(1)(2015), 27-41.