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ABSTRACT 
 In this paper, A new generalization of normality called meekly -normality is introduced and studied which is a simultaneous 

generalization of -normality and β-normality. Interrelation among some existing variants of normal spaces is discussed and 

characterizations of meekly -normal space with some existing variants of normal spaces are obtained.  
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1. INTRODUCTION   
Normality plays a prominent role in general topology. In 1968, Zaitsev [25] introduced the notion of quasi normality is a weaker form 

of normality and obtained its properties. In 1970, the concept of almost normality was introduced by Singal and Arya [16]. In 1973, 

the notion of mild normality was introduced by Shchepin [20] and, Singal and Singal [17] independently. In 2011, Arhangel’skii and 

Ludwig [1] introduced the concept of α-normal and β-normal spaces and obtained their p[roperties. Eva Murtinovain [15] provided an 

example of a β-normal Tychonoff space which is not normal. In 2002, Kohli and Das [10] introduced -normal topological spaces and 

obtained their characterizations. In 2008, Kalantan [9] introduced π-normal topological spaces and obtained their characterizations. In 

2015, Sharma and Kumar [22] introduced a new class of normal spaces called softly normal and obtained a characterization of softly 

normal space. In 2018, Kumar and Sharma [12] introduced the concepts of softly regular and partly regular spaces and obtained some 

characterizations of softly regular spaces. In 2023, Kumar [13] introduced the concepts of epi -normal spaces, which lies between 

epi-normal and epi-almost normal spaces, and epi-normal and epi-quasi normal spaces. Interrelation among some existing variants of 

normal spaces is discussed and characterizations of epi -normal space with some existing variants of normal spaces are obtained.  

 

2. PRELIMINARIES 

Let X be a topological space and let A  X. Throughout the present paper the closure of a set A will be denoted by cl(A) and the 

interior by int(A). A set U  X is said to be regularly open [14] if U = int(cl(U)). The complement of a regularly open set is called 

regularly closed. The finite union of regular open sets is said to be -open [25]. The complement of a -open set is said to be -

closed. A topological space is said to be normal [3, 7, 8] if for any pair of disjoint-closed subsets 𝐴 and 𝐵 of 𝑋 can be separated. A 

space is k-normal [20] (mildly normal [17]) if for every pair of disjoint regularly closed sets E, F of X there exist disjoint open 

subsets U and V of X such that E  U and F  V. A topological space is said to be almost normal [16] if for every pair of disjoint 

closed sets A and B one of which is regularly closed, there exist disjoint open sets U and V such that A  U and B  V. A topological 

space is said to be -normal [9] if for every pair of disjoint closed sets A and B, one of which is -closed, there exist disjoint open 

sets U and V such that A  U and B  V. A topological space X is said to be almost regular [16] if for every regularly closed set A 

and a point x  A, there exist disjoint open sets U and V such that A  U and x  V. A topological space is said to be softly regular 

[12] if for every π-closed set A and a point x  A, there exist two open sets U and V such that x  U, A  V, and U  V = . A 

topological space X is said to be -normal [1] if for any two disjoint closed subsets A and B of X, there exist disjoint open subsets U 

and V of X such that A  U is dense in A and B  U is dense in B. A space X is -normal [1] if for any two disjoint closed subsets A 

and B of X, there exist open subsets U and V of X such that A  U is dense in A, B  U is dense in B, and cl(U)  cl(V) = . A 

topological space is called almost -normal [5] if for every pair of disjoint closed sets A and B, one of which is regularly closed, 

there exist disjoint open sets U and V such that cl(U  A) = A, cl(V  B) = B, and cl(U)  cl(V) = . A topological space X is said to 
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be k-normal [19] if for every pair of disjoint regularly closed subsets A and B of X, there exist disjoint open sets U and V of X such 

that cl(A  U) = A, cl(B  U) = B and cl(U)  cl(V) = . A space X is said to be semi-normal if for every closed set A contained in 

an open set U, there exists a regularly open set V such that A  V  U. 

 

3. MEEKLY -NORMAL 

Definition 3.1. A topological space is called meekly -normal if for every pair of disjoint closed sets A and B, one of which is -

closed, there exist disjoint open sets U and V such that cl(U  A) = A, cl(V  B) = B, and cl(U)  cl(V) = . 

 

From the definitions it is obvious that every normal space is -normal and every -normal space is meekly -normal. 

 

Theorem 3.2. Every -normal space is meekly -normal. 

Proof. Let X be a -normal space. Let A and B be two disjoint closed sets in X, one of which (say A) is -closed. Since X is -normal 

there exist disjoint open sets W and V containing A and B respectively. Since W  V = , W  cl(V) = . Let U = int(A). Then cl(U) 

 cl(V) = , cl(U  A) = A, and cl(V  B) = B. So, the space is meekly -normal. 

 

The following implications hold but none are reversible. 

 

normal                 -normal                 almost normal                k-normal 

 

                                                                                                                

 

β-normal        meekly -normal       almost -normal             k-normal 

 

Example 3.3. Let X = {a, b, c, d} and  = {, X, {b}, {c}, {c, d}, {b, c}, {a, b, c}, {b, c, d}}. Then the space (X, ) is not meekly -

normal since for -closed A = {a, b} and disjoint closed set B = {d}, there does not exist two open sets U and V such that cl(U  A) = 

A, cl(B  V) = B, and U  V = . 

 

Example 3.4. Let X be the union of any infinite set Y and two distinct one point sets p and q. The modified Fort space on X as defined 

in [23] is almost β-normal as well as kβ-normal but not β-normal. In X any subset of Y is open and any set containing p or q open if 

and only if it contains all but a finite number of points in Y. This space is not β-normal even not α-normal [1] because for disjoint 

closed sets {p} and {q} there does not exist two disjoint open sets separating them. The regularly closed sets of this space are finite 

subsets of Y and sets of the form A  {p, q}, where A  Y is infinite. Thus the space is almost β-normal. 

 

Arhangel’skii and Ludwig [1] have shown that a space is normal if and only if it is κ-normal and β-normal. Therefore, every non-

normal space which is almost normal is an example of a κ-normal, almost β-normal space which is not β-normal. 

 

Recall that a Hausdorff space X is said to be extremally disconnected if the closure of every open set in X is open.  

 

A point x  X is called a -limit point [24] of A if every closed neighbourhood of x intersects A. Let cl(A) denotes the set of all -

limit points of A. The set A is called -closed if A = cl(A). 

 

Definition 3.5. A topological space X is said to be 

(i) -normal [10] if every pair of disjoint closed sets one of which is -closed are contained in disjoint open sets; 

(ii) Weakly -normal (w-normal) [10] if every pair of disjoint -closed sets are contained in disjoint open sets. 

 

Theorem 3.6. Every extremally disconnected meekly -normal space is -normal. 

Proof. Let X be an extremally disconnected meekly -normal space and let A be a -closed set disjoint from the closed set B. By 

meekly -normality of X, there exist disjoint open sets U and V such that cl(U  A) = A, cl(V  B) = B and cl(U)  cl(V) = . Thus 

A  cl(U) and B  cl(V). By the extremally disconnectedness of X, cl(U) and cl(V) are disjoint open sets containing A and B 

respectively. 
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Theorem 3.7. Every T1 almost β-normal space is almost regular [5]. 

 

Theorem 3.8. Every T1 meekly -normal space is softly regular. 

Proof. Let A be a -closed set in X and x be a point outside A. Since X is a T1-space and every singleton is closed in a T1-space, by 

meekly -normality there exist disjoint open sets U and V such that x  U, cl(V  A) = A, cl(U)  cl(V) = . Since A  cl(V), U and 

X – cl(U) are disjoint open sets containing {x} and A, respectively. Thus, the space is softly regular. 

 

Corollary 3.9. Every T1 meekly -normal space is almost regular. 

Proof. Since every softly regular space is almost regular, so proof is easy. 

 

Theorem 3.10. An almost regular weakly -normal space is mildly normal space [11]. 

 

Corollary 3.11. A softly regular weakly -normal space is mildly normal space 

Proof. Since every softly regular space is almost regular, so proof is easy. 

 

Corollary 3.12. In a T1-space, weak -normality and meekly -normality implies mildly normality. 

Proof. Let X be a T1 weakly -normal, meekly -normal space. Then by Corollaty 3.9, X is almost regular. Since every softly regular 

weakly θ-normal space is κ-normal, so X is κ-normal. 

 

Corollary 3.13. In the class of T1, θ-normal spaces, every meekly -normal space is -normal. 

Proof. Let X be a T1 space which is θ-normal as well as meekly -normal. Since every T1 meekly -normal space is softly regular, so 

X is -normal. 

 

Corollary 3.14. In the class of T1, paracompact spaces, every meekly -normal space is -normal. 

Proof. Since every paracompact space is θ-normal [10], the result holds by Corollary 3.13. 

 

Recall that a space X is said to be almost compact [4] if every open cover of X has a finite subcollection, the closure of whose 

members covers X. 

 

Corollary 3.15. An almost compact, meekly -normal, T1-space is κ-normal. 

Proof. The proof is immediate from the result Theorem 3.8 of Singal and Singal [17] and since every T1 meekly -normal space is 

almost regular that an almost regular almost compact space is κ-normal. 

 

Corollary 3.16. A Lindel¨of, meekly -normal, T1-space is κ-normal. 

Proof. Since an almost regular Lindel¨of space is κ-normal [17], and since every T1 meekly -normal space is almost regular, the 

proof is immediate 

 

Remark 3.17. The T1 axiom in the above theorem cannot be relaxed since there exist meekly -normal spaces which are not almost 

regular. 

 

Example 3.18. Let X = {a, b, c} and  = {{a}, {c}, {a, c}, , X}. Then X is vacuously normal, thus meekly -normal but not almost 

regular as the regularly closed set {a, b} and any point outside it cannot be separated by disjoint open sets. 

 

Theorem 3.19. In the class of T1, semi-normal spaces, every meekly -normal space is regular. 

Proof. Let X be a T1, semi-normal, and meekly -normal space. Let A be a closed subset of X and x  A. Since X is a T1-space, the 

singlton set {x} is closed. So by semi-normality of X, there exists a regularly open set U such that {x}  U  X − A. Here F = X − U 

is a regularly closed set containing A with x  F. As X is a meekly -normal T1-space, X is softly regular by Theorem 3.7. Thus there 

exist disjoint open sets V and W such that x ∈ V and A ⊂ F ⊂ W. Hence X is regular. 

 

The following theorem provides a characterization of meekly -normality. 

 

Theorem 3.20. For any topological space X, the following are equivalent: 

(1). X is meekly -normal; 
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(2). whenever E, F  X are disjoint closed sets and E is -closed, there is an open set V such that F = cl(V  F) and E  cl(V) = ; 

(3). whenever E  X is closed, U  X is -open, and E  U, there is an open set V such that E = cl(E  V)  cl(V)  U. 

Proof. [(1) ⇒ (2)]. Suppose that E, F  X are disjoint closed sets and E is -closed. Since X is meekly -normal, there exist open sets 

U and V such that E = cl(U ∩ E)  cl(U), F = cl(V  F)  cl(V), and cl(U)  cl(V) = . Then E  cl(V) = . 

 

[(2) ⇒ (1)]. Suppose that E, F  X are disjoint closed sets and E is -closed. By the assumption, there exists an open set V such that F 

= cl(V  F) and E  cl(V) = . Let U = int(E). Then E = cl(U  E) and cl(U)  cl(V) = E  clV) = . 

 

[(1) ⇒ (3)]. Suppose that E is closed, U is -open, and E  U. Since U is -open, X − U is -closed. Since X is meekly -normal, 

there are open sets O and V such that X − U = cl(O  (X − U)  O, E = cl(V  E)  cl(V), and cl(O)  cl(V) = . Then (X − U)  

cl(V) =  which means that cl(V)  U. 

 

[(3) ⇒ (2)]. Suppose that E, F  X are disjoint closed sets and E is -closed. Then F  X − E and X − E is -open. By the hypothesis, 

there is an open set V such that F = cl(V  F)  cl(V)  X − E. Then cl(V)  E = , as desired. 

 

The following result gives a decomposition of meekly -normality. 

 

Theorem 3.21. A space is -normal if and only if it is meekly -normal and quasi normal. 

Proof. Let X be a meekly -normal and quasi normal space. Let A and B be two disjoint closed sets in X in which A is -closed. By 

meekly -normality of X, there exist disjoint open sets U and V such that cl(U)  cl(V) = , cl(A  U) = A and cl(B  V) = B. Thus 

A  cl(U) and B  cl(V). Here cl(U) and cl(V) are disjoint -closed sets . So by quasi normality, there exist disjoint open sets W1 and 

W2 such that cl(U)  W1 and cl(V)  W2. Hence X is -normal. 

 

Corollary 3.22. In a semi-normal and quasi normal space the following statements are equivalent : 

(1). X is normal; 

(2). X is -normal; 

(3). X is β-normal; 

(4). X is meekly -normal. 

Proof. (1) ⇒ (3) ⇒ (4) and (1) ⇒ (2) ⇒ (4) are obvious.  

[(4) ⇒ (1)]. Let X be semi-normal, quasi normal and meekly -normal space. We have to show X is normal. By Theorem 3.21, X is -

normal. Since every -normal, semi-normal space is normal, so X is normal. 

Theorem 3.23. Every semi-normal, meekly -normal space is α-normal. 

Proof. Let X be a semi-normal, meekly -normal space. Let A and B be two disjoint closed sets in X. Thus A  (X − B). By semi-

normality, there exists a -open set F such that A  F  (X − B). Now A and (X − F) are two disjoint closed sets in X in which X − F 

is a -closed set containing B. Thus by meekly -normality, there exist disjoint open sets U and V such that cl(U  A) = A, cl((X − F) 

 V) = X − F, and cl(U)  cl(V) = . Here A = cl(U  A)  cl(U) and (X − F) = cl((X − F)  V)  cl(V). Thus U and W = X – cl(U) 

are two disjoint open sets such that cl(U  A) = A and B  W. Therefore, cl(W  B) = B and X is α-normal. 

 

Theorem 3.24. Suppose that X and Y are topological spaces, X is meekly -normal, and f : X → Y is onto, continuous, open, and 

closed. Then Y is meekly -normal. 

Proof. Suppose that E, F  Y are disjoint closed sets and E is -closed. Since f is continuous, f −1(E) and f −1(F) are disjoint closed 

sets. To see that f −1(E) = cl(f −1(int(E))), suppose that W  X is open such that W  f −1(E)  . Then f(W) is open in Y and f(W)  E 

= f(W)  cl(int(E))   which implies that f(W)  int(E)  . Hence, W  f −1(int(E))   and so f −1(E) = cl(f −1(int(E))). Since f −1(E) 

= cl(f −1(int(E))), f −1(E) is a -closed set. So there exists an open set U  X such that f −1(F) = cl(f −1(F)  U) and cl(U)  f −1(E) = . 

Since cl(U)  f −1(E) = , f(cl(U))  E = . Also, note that f(U) is open and f(cl(U)) is closed. Since f(cl(U)) is a closed set containing 

f(U), cl(f(U))  f(cl(U)). So cl(f(U))  E = . It remains to show that F = cl(F  f(U)). To see this, let y  F and O be an open set 

containing y. Then f −1(y) ⊆ [f −1(F)  f −1(O)]. Since f −1(F) = cl(f −1(F)  U), f −1(F)  U  f −1(O)  . Hence, F  f(U)  O = f(f 
−1(F))  f(U)  f(f −1(O))  f[f −1(F)  U  f −1(O)]  , as desired. 
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