

MEEKLY π -NORMAL SPACES IN GENERAL TOPOLOGY

Hamant Kumar¹, M. C. Sharma²

Department of Mathematics ¹V. A. Govt Degree College, Atrauli-Aligarh, 202280, U. P. (India) ²N. R. E. C. College, Khurja-203131, U. P. (India)

ABSTRACT

In this paper, A new generalization of normality called meekly π -normality is introduced and studied which is a simultaneous generalization of π -normality and β -normality. Interrelation among some existing variants of normal spaces is discussed and characterizations of meekly π -normal space with some existing variants of normal spaces are obtained. Mathematics Subject Classification 2020 : 54D10, 54D15

KEYWORDS : β -normal, π -normal, almost normal, meekly normal, softly regular, κ -normal, $\kappa\beta$ -normal.

1. INTRODUCTION

Normality plays a prominent role in general topology. In 1968, Zaitsev [25] introduced the notion of quasi normality is a weaker form of normality and obtained its properties. In 1970, the concept of almost normality was introduced by Singal and Arya [16]. In 1973, the notion of mild normality was introduced by Shchepin [20] and, Singal and Singal [17] independently. In 2011, Arhangel'skii and Ludwig [1] introduced the concept of α -normal and β -normal spaces and obtained their p[roperties. Eva Murtinovain [15] provided an example of a β -normal Tychonoff space which is not normal. In 2002, Kohli and Das [10] introduced θ -normal topological spaces and obtained their characterizations. In 2008, Kalantan [9] introduced π -normal topological spaces and obtained their characterizations. In 2015, Sharma and Kumar [22] introduced a new class of normal spaces called softly normal and obtained a characterization of softly normal space. In 2018, Kumar and Sharma [12] introduced the concepts of softly regular and partly regular spaces and obtained some characterizations of softly regular spaces. In 2023, Kumar [13] introduced the concepts of epi π -normal spaces, which lies between epi-normal and epi-almost normal spaces, and epi-normal and epi-quasi normal spaces. Interrelation among some existing variants of normal spaces is discussed and characterizations of epi π -normal space with some existing variants of normal spaces are obtained.

2. PRELIMINARIES

Let X be a topological space and let $A \subset X$. Throughout the present paper the **closure** of a set A will be denoted by cl(A) and the interior by int(A). A set $U \subset X$ is said to be regularly open [14] if U = int(cl(U)). The complement of a regularly open set is called regularly closed. The finite union of regular open sets is said to be π -open [25]. The complement of a π -open set is said to be π closed. A topological space is said to be normal [3, 7, 8] if for any pair of disjoint-closed subsets A and B of X can be separated. A space is k-normal [20] (mildly normal [17]) if for every pair of disjoint regularly closed sets E, F of X there exist disjoint open subsets U and V of X such that $E \subset U$ and $F \subset V$. A topological space is said to be **almost normal** [16] if for every pair of disjoint closed sets A and B one of which is regularly closed, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$. A topological space is said to be π -normal [9] if for every pair of disjoint closed sets A and B, one of which is π -closed, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$. A topological space X is said to be **almost regular** [16] if for every regularly closed set A and a point $x \notin A$, there exist disjoint open sets U and V such that $A \subset U$ and $x \in V$. A topological space is said to be softly regular [12] if for every π -closed set A and a point $x \notin A$, there exist two open sets U and V such that $x \in U$, $A \subset V$, and $U \cap V = \phi$. A topological space X is said to be α -normal [1] if for any two disjoint closed subsets A and B of X, there exist disjoint open subsets U and V of X such that $A \cap U$ is dense in A and $B \cap U$ is dense in B. A space X is β -normal [1] if for any two disjoint closed subsets A and B of X, there exist open subsets U and V of X such that $A \cap U$ is dense in A, $B \cap U$ is dense in B, and $cl(U) \cap cl(V) = \phi$. A topological space is called **almost** β -normal [5] if for every pair of disjoint closed sets A and B, one of which is regularly closed, there exist disjoint open sets U and V such that $cl(U \cap A) = A$, $cl(V \cap B) = B$, and $cl(U) \cap cl(V) = \phi$. A topological space X is said to

be β k-normal [19] if for every pair of disjoint regularly closed subsets A and B of X, there exist disjoint open sets U and V of X such that cl(A \cap U) = A, cl(B \cap U) = B and cl(U) \cap cl(V) = ϕ . A space X is said to be **semi-normal** if for every closed set A contained in an open set U, there exists a regularly open set V such that A \subset V \subset U.

3. MEEKLY π -NORMAL

Definition 3.1. A topological space is called **meekly** π -normal if for every pair of disjoint closed sets A and B, one of which is π -closed, there exist disjoint open sets U and V such that $cl(U \cap A) = A$, $cl(V \cap B) = B$, and $cl(U) \cap cl(V) = \phi$.

From the definitions it is obvious that every normal space is π -normal and every π -normal space is meekly π -normal.

Theorem 3.2. Every π -normal space is meekly π -normal.

Proof. Let X be a π -normal space. Let A and B be two disjoint closed sets in X, one of which (say A) is π -closed. Since X is π -normal there exist disjoint open sets W and V containing A and B respectively. Since $W \cap V = \phi$, $W \cap cl(V) = \phi$. Let U = int(A). Then $cl(U) \cap cl(V) = \phi$, $cl(U \cap A) = A$, and $cl(V \cap B) = B$. So, the space is meekly π -normal.

The following implications hold but none are reversible.

normal	\Rightarrow	π -normal	\Rightarrow	almost normal	\Rightarrow	k-normal
\Downarrow		\Downarrow		\Downarrow		\Downarrow

 $\beta\text{-normal} \ \Rightarrow \ meekly \pi\text{-normal} \ \Rightarrow \ almost \beta\text{-normal} \ \Rightarrow \ \beta k\text{-normal}$

Example 3.3. Let $X = \{a, b, c, d\}$ and $\Im = \{\phi, X, \{b\}, \{c\}, \{c, d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Then the space (X, \Im) is not meekly π -normal since for π -closed $A = \{a, b\}$ and disjoint closed set $B = \{d\}$, there does not exist two open sets U and V such that $cl(U \cap A) = A$, $cl(B \cap V) = B$, and $U \cap V = \phi$.

Example 3.4. Let X be the union of any infinite set Y and two distinct one point sets p and q. The modified Fort space on X as defined in [23] is almost β -normal as well as k β -normal but not β -normal. In X any subset of Y is open and any set containing p or q open if and only if it contains all but a finite number of points in Y. This space is not β -normal even not α -normal [1] because for disjoint closed sets {p} and {q} there does not exist two disjoint open sets separating them. The regularly closed sets of this space are finite subsets of Y and sets of the form $A \cup \{p, q\}$, where $A \subset Y$ is infinite. Thus the space is almost β -normal.

Arhangel'skii and Ludwig [1] have shown that a space is normal if and only if it is κ -normal and β -normal. Therefore, every non-normal space which is almost normal is an example of a κ -normal, almost β -normal space which is not β -normal.

Recall that a Hausdorff space X is said to be **extremally disconnected** if the closure of every open set in X is open.

A point $x \in X$ is called a θ -limit point [24] of A if every closed neighbourhood of x intersects A. Let $cl_{\theta}(A)$ denotes the set of all θ -limit points of A. The set A is called θ -closed if $A = cl_{\theta}(A)$.

Definition 3.5. A topological space X is said to be

(i) θ -normal [10] if every pair of disjoint closed sets one of which is θ -closed are contained in disjoint open sets; (ii) Weakly θ -normal (w θ -normal) [10] if every pair of disjoint θ -closed sets are contained in disjoint open sets.

Theorem 3.6. Every extremally disconnected meekly π -normal space is π -normal.

Proof. Let X be an extremally disconnected meekly π -normal space and let A be a π -closed set disjoint from the closed set B. By meekly π -normality of X, there exist disjoint open sets U and V such that $cl(U \cap A) = A$, $cl(V \cap B) = B$ and $cl(U) \cap cl(V) = \phi$. Thus $A \subset cl(U)$ and $B \subset cl(V)$. By the extremally disconnectedness of X, cl(U) and cl(V) are disjoint open sets containing A and B respectively.

Theorem 3.7. Every T_1 almost β -normal space is almost regular [5].

Theorem 3.8. Every T_1 meekly π -normal space is softly regular.

Proof. Let A be a π -closed set in X and x be a point outside A. Since X is a T₁-space and every singleton is closed in a T₁-space, by meekly π -normality there exist disjoint open sets U and V such that $x \in U$, $cl(V \cap A) = A$, $cl(U) \cap cl(V) = \phi$. Since $A \subset cl(V)$, U and X - cl(U) are disjoint open sets containing {x} and A, respectively. Thus, the space is softly regular.

Corollary 3.9. Every T_1 meekly π -normal space is almost regular. **Proof.** Since every softly regular space is almost regular, so proof is easy.

Theorem 3.10. An almost regular weakly θ -normal space is mildly normal space [11].

Corollary 3.11. A softly regular weakly θ -normal space is mildly normal space **Proof.** Since every softly regular space is almost regular, so proof is easy.

Corollary 3.12. In a T₁-space, weak θ -normality and meekly π -normality implies mildly normality. **Proof.** Let X be a T₁ weakly θ -normal, meekly π -normal space. Then by Corollaty 3.9, X is almost regular. Since every softly regular weakly θ -normal space is κ -normal, so X is κ -normal.

Corollary 3.13. In the class of T_1 , θ -normal spaces, every meekly π -normal space is π -normal. **Proof.** Let X be a T_1 space which is θ -normal as well as meekly π -normal. Since every T_1 meekly π -normal space is softly regular, so X is π -normal.

Corollary 3.14. In the class of T_1 , paracompact spaces, every meekly π -normal space is π -normal. **Proof.** Since every paracompact space is θ -normal [10], the result holds by Corollary 3.13.

Recall that a space X is said to be **almost compact** [4] if every open cover of X has a finite subcollection, the closure of whose members covers X.

Corollary 3.15. An almost compact, meekly π -normal, T₁-space is κ -normal. **Proof.** The proof is immediate from the result Theorem 3.8 of Singal and Singal [17] and since every T₁ meekly π -normal space is almost regular that an almost regular almost compact space is κ -normal.

Corollary 3.16. A Lindel of, meekly π -normal, T₁-space is κ -normal.

Proof. Since an almost regular Lindel" of space is κ -normal [17], and since every T₁ meekly π -normal space is almost regular, the proof is immediate

Remark 3.17. The T_1 axiom in the above theorem cannot be relaxed since there exist meekly π -normal spaces which are not almost regular.

Example 3.18. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\{a\}, \{c\}, \{a, c\}, \phi, X\}$. Then X is vacuously normal, thus meekly π -normal but not almost regular as the regularly closed set $\{a, b\}$ and any point outside it cannot be separated by disjoint open sets.

Theorem 3.19. In the class of T_1 , semi-normal spaces, every meekly π -normal space is regular.

Proof. Let X be a T₁, semi-normal, and meekly π -normal space. Let A be a closed subset of X and $x \notin A$. Since X is a T₁-space, the singlton set {x} is closed. So by semi-normality of X, there exists a regularly open set U such that {x} $\subset U \subset X - A$. Here F = X - U is a regularly closed set containing A with $x \notin F$. As X is a meekly π -normal T₁-space, X is softly regular by Theorem 3.7. Thus there exist disjoint open sets V and W such that $x \in V$ and $A \subset F \subset W$. Hence X is regular.

The following theorem provides a characterization of meekly π -normality.

Theorem 3.20. For any topological space X, the following are equivalent:

(1). X is meekly π -normal;

© 2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013-----

(2). whenever E, $F \subset X$ are disjoint closed sets and E is π -closed, there is an open set V such that $F = cl(V \cap F)$ and $E \cap cl(V) = \phi$; (3). whenever $E \subset X$ is closed, $U \subset X$ is π -open, and $E \subset U$, there is an open set V such that $E = cl(E \cap V) \subset cl(V) \subset U$. **Proof.** [(1) \Rightarrow (2)]. Suppose that E, $F \subset X$ are disjoint closed sets and E is π -closed. Since X is meekly π -normal, there exist open sets U and V such that $E = cl(U \cap E) \subset cl(U)$, $F = cl(V \cap F) \subset cl(V)$, and $cl(U) \cap cl(V) = \phi$. Then $E \cap cl(V) = \phi$.

 $[(2) \Rightarrow (1)]$. Suppose that E, F \subset X are disjoint closed sets and E is π -closed. By the assumption, there exists an open set V such that F = cl(V \cap F) and E \cap cl(V) = ϕ . Let U = int(E). Then E = cl(U \cap E) and cl(U) \cap cl(V) = E \cap clV) = ϕ .

 $[(1) \Rightarrow (3)]$. Suppose that E is closed, U is π -open, and E \subset U. Since U is π -open, X – U is π -closed. Since X is meekly π -normal, there are open sets O and V such that X – U = cl(O \cap (X – U) \subset O, E = cl(V \cap E) \subset cl(V), and cl(O) \cap cl(V) = ϕ . Then (X – U) \cap cl(V) = ϕ which means that cl(V) \subset U.

 $[(3) \Rightarrow (2)]$. Suppose that E, F \subset X are disjoint closed sets and E is π -closed. Then F \subset X – E and X – E is π -open. By the hypothesis, there is an open set V such that F = cl(V \cap F) \subset cl(V) \subset X – E. Then cl(V) \cap E = ϕ , as desired.

The following result gives a decomposition of meekly π -normality.

Theorem 3.21. A space is π -normal if and only if it is meekly π -normal and quasi normal.

Proof. Let X be a meekly π -normal and quasi normal space. Let A and B be two disjoint closed sets in X in which A is π -closed. By meekly π -normality of X, there exist disjoint open sets U and V such that $cl(U) \cap cl(V) = \phi$, $cl(A \cap U) = A$ and $cl(B \cap V) = B$. Thus $A \subset cl(U)$ and $B \subset cl(V)$. Here cl(U) and cl(V) are disjoint π -closed sets. So by quasi normality, there exist disjoint open sets W_1 and W_2 such that $cl(U) \subset W_1$ and $cl(V) \subset W_2$. Hence X is π -normal.

Corollary 3.22. In a semi-normal and quasi normal space the following statements are equivalent :

(1). X is normal;

(2). X is π -normal;

(3). X is β -normal;

(4). X is meekly π -normal.

Proof. $(1) \Rightarrow (3) \Rightarrow (4)$ and $(1) \Rightarrow (2) \Rightarrow (4)$ are obvious.

 $[(4) \Rightarrow (1)]$. Let X be semi-normal, quasi normal and meekly π -normal space. We have to show X is normal. By Theorem 3.21, X is π -normal. Since every π -normal, semi-normal space is normal, so X is normal.

Theorem 3.23. Every semi-normal, meekly π -normal space is α -normal.

Proof. Let X be a semi-normal, meekly π -normal space. Let A and B be two disjoint closed sets in X. Thus $A \subset (X - B)$. By semi-normality, there exists a π -open set F such that $A \subset F \subset (X - B)$. Now A and (X - F) are two disjoint closed sets in X in which X - F is a π -closed set containing B. Thus by meekly π -normality, there exist disjoint open sets U and V such that $cl(U \cap A) = A$, $cl((X - F) \cap V) = X - F$, and $cl(U) \cap cl(V) = \phi$. Here $A = cl(U \cap A) \subset cl(U)$ and $(X - F) = cl((X - F) \cap V) \subset cl(V)$. Thus U and W = X - cl(U) are two disjoint open sets such that $cl(U \cap A) = A$ and $B \subset W$. Therefore, $cl(W \cap B) = B$ and X is α -normal.

Theorem 3.24. Suppose that X and Y are topological spaces, X is meekly π -normal, and $f : X \to Y$ is onto, continuous, open, and closed. Then Y is meekly π -normal.

Proof. Suppose that E, $F \subset Y$ are disjoint closed sets and E is π -closed. Since f is continuous, $f^{-1}(E)$ and $f^{-1}(F)$ are disjoint closed sets. To see that $f^{-1}(E) = cl(f^{-1}(int(E)))$, suppose that $W \subset X$ is open such that $W \cap f^{-1}(E) \neq \phi$. Then f(W) is open in Y and $f(W) \cap E = f(W) \cap cl(int(E)) \neq \phi$ which implies that $f(W) \cap int(E) \neq \phi$. Hence, $W \cap f^{-1}(int(E)) \neq \phi$ and so $f^{-1}(E) = cl(f^{-1}(int(E)))$. Since $f^{-1}(E) = cl(f^{-1}(int(E)))$. Since $f^{-1}(E) = cl(f^{-1}(int(E)))$, $f^{-1}(E) = a \pi$ -closed set. So there exists an open set $U \subset X$ such that $f^{-1}(F) = cl(f^{-1}(F) \cap U)$ and $cl(U) \cap f^{-1}(E) = \phi$. Since $cl(U) \cap f^{-1}(E) = \phi$, $f(cl(U)) \cap E = \phi$. Also, note that f(U) is open and f(cl(U)) is closed. Since f(cl(U)) is a closed set containing f(U), $cl(f(U)) \subset f(cl(U))$. So $cl(f(U)) \cap E = \phi$. It remains to show that $F = cl(F \cap f(U))$. To see this, let $y \in F$ and O be an open set containing y. Then $f^{-1}(y) \subseteq [f^{-1}(F) \cap f^{-1}(O)]$. Since $f^{-1}(F) = cl(f^{-1}(F) \cap U \cap f^{-1}(O) \neq \phi$. Hence, $F \cap f(U) \cap O = f(f^{-1}(F)) \cap f(U) \cap f(f^{-1}(O)) \supset f(f^{-1}(F) \cap U \cap f^{-1}(O)] \neq \phi$, as desired.

REFERENCES

- 1. A.V. Arhangel'skii, L. Ludwig, On a-normal and β -normal spaces, Comment. Math. Univ. Carolin. 42:3 (2001) 507–519.
- 2. R.L. Blair, Spaces in which special sets are z-embedded, Canad. J. Math. 28:4 (1976) 673–690.

© 2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013--

ISSN (Online): 2455-3662 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal Volume: 9| Issue: 10| October 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

- 3. N. Bourbaki, Topologie general, 1951, Paris, Actualites Sci. Ind., Nos. Hermann, 858-1142.
- 4. A. Csaszar, General Topology, Adam Higler Ltd, Bristol, 1978.
- 5. A.K. Das, A note on spaces between normal and κ-normal spaces, Filomat 27:1 (2013) 85–88.
- 6. A.K. Das, Pratibha Bhat and J. K. Tartir, On a simultaneous of β-normalily and almost normality, Filomat 31:2 (2017) 425–430.
- 7. J. Dugundji, Topology, Allyn and Bacon, Inc., 470, Atlantic Avenue, Boston, 1966.
- 8. R. Engelking, General Topology, vol. 6, Berlin: Heldermann (Sigma Series in Pure Mathematics), Poland, 1977.
- 9. L. N. Kalantan, π -normal topological spaces, Filomat 22:1 (2008) 173–181.
- 10. J. K. Kohli, A.K. Das, New normality axioms and decompositions of normality, Glasnik Mat. 37(57)(2002) 165–175.
- 11. J. K. Kohli, A.K. Das, On functionally θ-normal spaces, Applied General Topology, 6:1 (2005) 1–14.
- 12. H. Kumar and M. C. Sharma, Softly regular spaces in topological spaces, Journal of Emerging Technologies and Innovative Research, Vol. 6, Issue 11, (2018), 183-190.
- 13. H. Kumar, Epi-π normal spaces in topological spaces, Journal of Emerging Technologies and Innovative Research, Vol. 10, Issue 4, (2023), e656-e669.
- 14. K. Kuratowski, Topologie I, Hafner, New York, 1958.
- 15. E. Murtinova, A β -normal Tyconoff space which is not normal, Comment. Math. Univ. Carolin. 43:1 (2002) 159–164.
- 16. M. K. Singal, S.P. Arya, Almost normal and almost completely regular spaces, Glasnik Mat. 5(25) (1970) 141–152.
- 17. M. K. Singal, A.R. Singal, Mildly normal spaces, Kyungpook Math J. 13 (1973) 27–31.
- 18. M. K. Singal and S. Arya, On almost regular spaces, Glas. Mat. 4 (1969), no. 24, 89–99.
- 19. S. Singh and M. K. Rana, On k-normal spaces, Proyeceiones Journal of Mathematics, Vol. 42, No. 3 (2023), 695-712.
- 20. E.V. Schepin, Real-valued functions, and spaces close to normal, Sib. Matem. Journ. 13:5 (1972) 1182–1196.
- 21. E. V. Schepin, On topological products, groups, and a new class of spaces more general than metric spaces, Soviet Math. Dokl. 17:1 (1976) 152–155.
- 22. M. C. Sharma and Hamant Kumar, Softly normal topological spaces, Acta Ciencia Indica, Vol. XLI, M. No. 2, (2015), 81-84.
- 23. L. A. Steen, J.A. Seebach Jr., Counterexamples in Topology, Springer Verlag, New york, 1978.
- 24. N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78:2 (1968) 103–118.
- 25. V. Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR 178 (1968), 778–779.