
 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 10| October 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013--275

INNOVATIVE SOLUTION FOR IMPLEMENTING WEB FORM

SUBMISSION IN STATIC WEBSITES

Jais Binoy

Research Associate, International Centre for Technological Innovations, Kerala.

ABSTRACT

In an age where web presence is paramount, static websites remain an elegant solution for many, offering simplicity and speed.

However, static websites face inherent limitations when it comes to web form handling. This study delves into the challenges

faced by static website hosting providers and presents an innovative approach to overcome these hurdles. By leveraging the

power of JavaScript, Google Sheets, and Webhook extensions, this paper proposes a cost-effective solution that redefines web

form handling for static websites. This approach not only addresses the shortcomings of server-side processing and data

submission restrictions but also enhances data management. Furthermore, it explores the integration of Form Mule for efficient

email notifications. This study presents a substantial and relevant solution for static website owners looking to optimize user

interactions, implement web forms and data handling.

KEYWORDS: Static websites, Web form handling, JavaScript, Webhook, Google Sheets, Form submission

I. INTRODUCTION
Static websites have a substantial presence on the internet,

catering to businesses, personal projects, and various

organizations. Overcoming the limitations in web form

handling is of paramount importance for these websites

Research Question

How can the limitations and challenges associated with web

form handling in static websites be effectively mitigated while

maintaining cost-effectiveness?

Research Objectives

➢ To identify and analyze the limitations of web form

handling in static website hosting

➢ To propose an innovative solution for cost-effective web

form handling in static websites using JavaScript, Google

Sheets, and Webhook extensions.

This paper primarily focuses on addressing the limitations of

web form handling in the context of static website hosting. It

provides an analysis of the challenges faced and offers a

comprehensive solution using readily available tools and

technologies, making it accessible to a wide range of users. The

study, however, does not delve into advanced server-side

scripting or custom-built database solutions.

II. METHODOLOGY
The research methodology for this paper presents a practical

approach in establishing a dynamic form on a static website.

The following methods were utilized:

▪ Google Sheet Setup: Created a Google Spreadsheet to

serve as the data repository for form submissions.

▪ Webhook Extension Installation & URL

Generation: Installed webhook extension, configured

it to monitor the Google Spreadsheet, and generated a

webhook URL.

▪ HTML Form Integration with Data-Webhook-URL:

Developed the HTML form and embed it within the

static website. Included the generated webhook URL.

▪ JavaScript Data Extraction and Google Sheets

Integration: Utilized JavaScript to extract and process

form data entered by users and seamlessly transmit it to

the designated Google Spreadsheet, thereby facilitating

efficient data collection.

III. STATIC WEBSITE HOSTING SOLUTIONS
A static website consists of unchanging web pages created with

HTML, CSS, and occasional JavaScript for simple features. Its

content remains fixed until manually updated, lacking dynamic

changes. As there are no back-end methods, client-server

demands, nor database queries required in delivering a static

website, it displays fast performance with its servers always

ready with HTML outputs. Hosting such web pages is Static

Web Hosting. In the present, a web hosting provider is

necessary to host the website.

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 10| October 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013--276

Below are some of the best platforms to host static webpages[1]:

Hosting Providers Major Features

Storage Bandwidth Custom

Domains

SSL Build Minutes Free

Packages

Netlify Unlimited 100

GB/month

Yes Yes (Via

Let's

Encrypt)

300/month Available

Vercel Unlimited Up to 100

GB/month

Yes Yes Up to 45 minutes

of build time per

deployment

Available

Cloudflare Pages Unlimited Unlimited Yes Yes 500 builds per

month

Available

GitHub Pages Unlimited Unlimited Yes Automatic

SSL

- Available

IV. WEB FORM LIMITATIONS IN STATIC

WEBSITES
One of the major drawbacks is web form handling within the

context of web hosting providers, it's essential to be aware of

the various limitations and drawbacks that can impact the way

collecting and storing data through web forms. These factors

can have a substantial effect on website's functionality and

overall user experience.

One of the primary limitations is the often-restricted server-side

processing capabilities that hosting providers offer. This

limitation means there might be difficulties when trying to

create highly dynamic and interactive web forms. These hosting

providers might not support custom server-side scripts, which

are essential for advanced functionalities like conditional logic

or dynamic data retrieval.

Another significant drawback is the limitations imposed on

aspects like data formats and the number of form submissions

that can be received. Hosting providers might restrict the

number of form submissions, potentially resulting in lost data

or frustrated users. The absence of SSL(Secure Sockets Layer)

support, which ensures secure data transmission, can also be a

significant concern, especially when handling sensitive

information through web forms. Furthermore, without the

database features organizing and managing the collected data

can become a cumbersome task.

To overcome these limitations and create a dynamic web form

handling, need a cost effective and simple way to handle web

forms, secure data collection and have a user-friendly

interaction.

V. CURRENT SOLUTIONS FOR FORM

SUBMISSION IN STATIC PAGES
Some of the primary Form service providers available in the

market and their feature comparison is done below[2]:

Features Form Service Providers

Reform Formspree Static Forms FormKeep Getform

Price(Basic Plan) $15/month[3] $8/month[4] -Nil- $4.99/month[5] $19/month[6]

Customizable Forms ✓ ✓ ✓ ✓ ✓

Email Notifications ✓ ✓ ✓ ✓ ✓

Autoresponders ✓ ✓ ✗ ✓ ✓

Analytics ✓ ✗ ✗ ✓ ✗

Integration ✓ ✓ ✓ ✓ ✓

Spam Prevention ✓ ✓ ✓ ✓ ✓

Storage(Max Avail) Inbox Custom(∞) Inbox Up to 40GB Up to 10GB

Third-Party Integrations ✓ ✗ ✓ ✓ ✓

Serverless Functions ✗ ✗ ✗ ✓ ✗

HTML Forms Integration ✓ ✓ ✓ ✗ ✓

Custom Branding ✓ ✓ ✗ ✓ ✓

Email Templates ✓ ✓ ✗ ✓ ✓

GDPR Compliance ✗ ✓ ✗ ✓ ✓

Redirects ✗ ✗ ✗ ✗ ✓

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 10| October 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013--277

VI. PROPOSAL: WEBHOOK INTEGRATION

WITH GOOGLE SHEETS USING JAVASCRIPT
The major limitation of a static hosting is Form submission and

its related operations hence proposing an idea by using the

possibilities of JavaScript, Google Sheets and Webhook

extension to make Web form functionalities for a static website.

Google sheet will act as a database and the webhook extension

generates a webhook URL, the JavaScript code helps in data

submission to the sheets. It extracts the form data using the

Form Data constructor and sends it as a POST request to a

specified webhook URL using the Fetch API.

Installing Webhook Extension

❖ Open Google Sheets: Go to Google Sheets by visiting

(https://sheets.google.com) and sign in to Google account

if not already logged in.

❖ Create or Open a Sheet: Either create a new Google

Sheet or open an existing one to use the Webhook

extension.

❖ Access Add-ons: Click on "Add-ons" in the Extensions

menu of the Google Sheet's top menu bar.

❖ Get Add-ons: In the dropdown menu that appears, select

"Get add-ons."

❖ Search for Webhook:

- In the "Add-ons" store, there is a search bar in the

upper-right corner.

 - Type "Webhook" into the search bar and

press Enter.

❖ Install Webhook Extension:

- The "Webhook" extension listed there. Click on

it to open the details.

- Click the "Install" button.

Webhook Extension

- There will be prompts to grant permissions. Click through

these prompts to install the extension.

Generating a Webhook URL

1. Open Webhook Extension:

After installing the Webhook extension, access it by

going to "Add-ons" in the top menu bar and selecting

"Webhook" or a similar option depending on the

extension's name.

2. Create a New Webhook:

In the Webhook extension, find an option to create a

new webhook. Click on it.

3. Configure the Webhook:

Configure the webhook by providing information such

as the event or trigger that should initiate the webhook,

any authentication or headers required, and the

destination URL where the webhook payload should

be sent. Follow the prompts to set up the webhook.

4. Generate Webhook URL:

As part of the setup process, there is an option to

generate a Webhook URL. This URL will be used to

receive data from from webhook.

https://doi.org/10.36713/epra2013
https://sheets.google.com/

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 10| October 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013--278

5)Use the Webhook URL

The generated Webhook URL is used in applications, services, or other systems to send data to the Google Sheets.

Webhook URL Syntax: Protocol/Domain/Path/Script ID/exec?gid=

Webhook URL Sample: https://script.google.com/macros/s/{Script ID}/exec?gid=‘ ’

Protocol: https://

Domain: script.google.com

Path: /macros/s/ followed by the unique Script ID and /exec, which indicates the execution of a Google Apps Script web app.

Script ID: a unique identifier used as part of the URL to identify and access a specific Google Apps Script project.

Query Parameter: ?gid=0

This URL is used to access and execute a specific Google Apps Script web app with the provided unique Script ID. The ?gid=0

query parameter can be used to access different sheets by changing the gid number.

Form Syntax:

 <form id="myForm" class="jost-font" data-webhook-url="paste generated webhook url here">
 <!--FORM ELEMENTS HERE-->

</form>
<div id="successMessage" class="alert alert-success d-none mt-2">‘Success Message Here’</div>

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 10| October 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013--279

<div class="spinner-border text-primary d-none mt-2" role="status" id="spinner"></div>

JavaScript Code
// Create error message container
const errorMessageDiv = document.createElement('div');

errorMessageDiv.id = 'errorMessage';

errorMessageDiv.className = 'alert alert-danger d-none mt-2';

errorMessageDiv.textContent = 'There was an error submitting the form. Please try

again.';

document.getElementById('myForm').insertAdjacentElement('beforeend',

errorMessageDiv);

document.getElementById('myForm').addEventListener('submit', function(event) {

 event.preventDefault();

 const webhookUrl = this.getAttribute('data-webhook-url');

 const formData = new FormData(this);

 // Disable submit button and show spinner
 document.getElementById('submitBtn').setAttribute('disabled', true);

 document.getElementById('spinner').classList.remove('d-none');

 // Clear previous messages

 document.getElementById('successMessage').classList.add('d-none');

 errorMessageDiv.classList.add('d-none'); // Hide error message

 fetch(webhookUrl, {

 method: 'POST',

 body: formData

 })

 .then(response => {

 // Hide spinner

 document.getElementById('spinner').classList.add('d-none');

 if (response.ok) {

 // Show success message
 document.getElementById('successMessage').classList.remove('d-none');

 } else {

 // Show error message

 errorMessageDiv.classList.remove('d-none');

 }

 })

 .catch(error => {

 // Hide spinner
 document.getElementById('spinner').classList.add('d-none');

 // Show error message

 errorMessageDiv.classList.remove('d-none');

 });

});

document.getElementById('resetBtn').addEventListener('click', function() {

 document.getElementById('myForm').reset();

 document.getElementById('submitBtn').removeAttribute('disabled');

 document.getElementById('successMessage').classList.add('d-none');

 errorMessageDiv.classList.add('d-none'); // Hide error message

});

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 10| October 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013--280

Code Explanation

The code begins by creating an error message

container called errorMessageDiv. This container is

designed as a new <div> element, and it's configured

with several attributes. These attributes include an 'id'

of 'errorMessage' for easy identification, a 'className'

that includes classes such as 'alert', 'alert-danger', 'd-

none', and 'mt-2' for styling and visibility control, and

a 'textContent' property that holds a default error

message.

Subsequently, the error message container is inserted

into the HTML form with the ID 'myForm',

specifically placed just before the end of the form, so

it can be used to display error messages.

Moving on, an event listener is added to the 'myForm'

element. This event listener listens for the 'submit'

event, which is triggered when the user attempts to

submit the form. The event handler function is

executed when this event occurs.

Inside the event handler function, the

event.preventDefault() method is called to prevent

the default form submission action from taking place.

This allows the JavaScript code to handle the form

submission process.

Next, the code retrieves the data-webhook-url

attribute from the form element. This attribute is

expected to contain the URL to which the form data

will be sent.

The form data is then extracted using the FormData

constructor, creating an object that holds the names

and values of the form fields.

To provide feedback to the user during form

submission, the code disables the submit button by

setting its 'disabled' attribute to true. Additionally, it

displays a spinner element (with the ID 'spinner') to

indicate that the form is being processed.

Any previous messages, whether they are success or

error messages, are hidden. The success message is

hidden by adding the 'd-none' class to it, and the error

message container (errorMessageDiv) is also hidden

to prepare for displaying new messages.

The code proceeds to send a POST request to the URL

specified in the webhookUrl using the fetch API. The

form data is included in the request body.

Upon completion of the request, a then block handles

the response. If the response has an HTTP status code

in the range of 200-299 (indicating a successful

response), the success message is displayed.

Conversely, if the response is not successful, the error

message container is displayed.

In the event of an error during the request, such as a

network error, a catch block is triggered. In this block,

the spinner is hidden, and the error message container

(errorMessageDiv) is shown to inform the user of the

issue.

Lastly, the code adds an event listener to a button with

the ID 'resetBtn'. When this button is clicked, it

performs several actions. First, it resets the form with

the ID 'myForm' by clearing all form fields. Then, it

removes the 'disabled' attribute from the submit

button, making it available for future submissions. It

also hides the 'successMessage' by adding the 'd-none'

class and hides the error message container

(errorMessageDiv) to reset the user interface.

VII. RESULTS
With the above specified integration, web form submission and

data collection are possible for static websites. Below is a

sample HTML form outlook with webhook integration.

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 10| October 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013--281

A demo with sample data generated using online tool[7].

VIII. ADVANTAGES, DRAWBACKS &

ADDITIONAL FEATURE
The major advantage of this implementation is that its cost free.

The google sheets here acts as a database for data storage. There

is no requirement of server-side functionalities which in turn

save costs. Unlimited forms can be submitted. Multiple sheets

can be used by changing the gid number. The google sheets has

user friendly environment so it’s easy for handling, sorting and

analysing data. It offers robust data import and export

capabilities. Doesn't require software installation, making it

accessible from various operating systems. It can handle large

datasets and is suitable for both personal and enterprise-level

data management and also provides automatic backups, robust

security features, and compliance with industry standards,

making it a secure option for data storage.

Even though there are many advantages there exists some

drawbacks for this method, out of which one is that the users

won’t receive email notification after they submit the form. To

overcome this, there is an existing feature of sheets , an

additional extension named Form Mule which allows to set

time triggered mailing facility. The mail content can be written

as per our choice.

Form Mule Extension

VIII. CONCLUSION
In conclusion, this study has examined the limitations of web

form handling within the static web hosting. These limitations

encompass restricted server-side processing capabilities, data

submission restrictions, and security concerns. To address these

challenges, proposed an innovative approach that leverages

Google Sheets as a database for web form data. By using

JavaScript and Webhook extensions, web forms can be

seamlessly integrated with Google Sheets, allowing for data

submission and secure storage. This method is not only cost-

effective but also user-friendly, offering an alternative to

traditional server-side processing. Additionally, introduced

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 10| October 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013--282

Form Mule as a solution for email notifications. The integration

of these solutions enhances the functionality of static websites,

making them more efficient and user-oriented. Future

directions may include further refinements to the integration

process and exploring additional extensions to meet specific

web form needs.

VIII. REFERENCES
1. Mehedi Sharif,(2023), “ 10 Best Free Static Website Hosting

Providers In 2023”, Gethugothemes,

 https://gethugothemes.com/best-free-static-website-hosting.

2. “8 Tools to Use Forms on a Static Site”, (2021),

simplystatic.com, https://simplystatic.com/tutorials/forms-

on-a-static-site/.

3. Bjorn Lindholm, Peter Suhm,(2021), “Add Reform to your

tool belt”, Reform, https://www.reform.app/pricing/.

4. “Formspree Plans”, (2023), Formspree Inc.

https://formspree.io/plans.

5. David,(2023), “Features & Pricing”, FormKeep Inc.

 https://formkeep.com/features/pricing.

6. “The best plan for you”, (2023), Getform,

 https://getform.io/pricing.

7. “Free Fake Phone Number Generator Tool”, (2023), Textr

Inc, https://textrapp.com/free-tools/textr-free-fake-phone-

number-generator-tool.

https://doi.org/10.36713/epra2013
https://gethugothemes.com/best-free-static-website-hosting
https://simplystatic.com/tutorials/forms-on-a-static-site/
https://simplystatic.com/tutorials/forms-on-a-static-site/
https://www.reform.app/pricing/
https://formspree.io/plans
https://formkeep.com/features/pricing
https://getform.io/pricing
https://textrapp.com/free-tools/textr-free-fake-phone-number-generator-tool
https://textrapp.com/free-tools/textr-free-fake-phone-number-generator-tool

