SJIF Impact Factor 2022: 8.197 | ISI I.F. Value: 1.241 | Journal DOI: 10.36713/epra2016

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD) Volume: 8 | Issue: 1 | January 2023

- Peer Reviewed Journal

$(1, 2)^*$ -QUASI η -NORMAL SPACES IN BITOPOLOGY

Hamant Kumar

Department of Mathematics, Veerangana Avantibai Govt Degree College, Atrauli-Aligarh, U. P. (India)

ABSTRACT

In this paper, we introduce a new class of normal space called, $(1, 2)^*$ -quasi η -normal space. The relationships among $(1, 2)^*$ normal, $(1, 2)^*$ -quasi η -normal, mildly $(1, 2)^*$ -normal, $(1, 2)^*$ -quasi α -normal, $(1, 2)^*$ -mildly α -normal, $(1, 2)^*$ - α -normal and mildly $(1, 2)^*$ - η -normal spaces are investigated. Moreover, we introduce some closed functions such as $(1, 2)^*$ - $\pi g \eta$ -closed and almost $(1, 2)^*$ - $\pi g \eta$ -closed. Utilizing $(1, 2)^*$ - $\pi g \eta$ -closed sets and some functions, we obtain some characterizations and preservation theorems for $(1, 2)^*$ -quasi η -normal spaces.

KEYWORDS: $(1, 2)^*$ - η -open, $(1, 2)^*$ - $\pi g \eta$ -closed sets; $(1, 2)^*$ - $\pi g \eta$ -closed, almost $(1, 2)^*$ - $\pi g \eta$ -closed, $(1, 2)^*$ - $\pi g \eta$ -continuous, almost $(1, 2)^*$ - $\pi g \eta$ -continuous functions; $(1, 2)^*$ - η -normal, $(1, 2)^*$ -quasi η -normal spaces. 2020 AMS Subject Classification: 54A05, 54A10, 54E55

1. INTRODUCTION

The study of bitopological space was first initiated by Kelly [7] in 1963. By using the topological notions, namely, semi-open, α open and pre-open sets, many new bitopological sets are defined and studied by many topologists. In 1990, Lal and Rahman [13] studied quasi normal spaces in topological spaces and obtained their properties. In 2000, Dontchev and Noiri [4] further studied quasi normal spaces in topological spaces and obtained their characterizations. In 2004, Ravi and Thivagar [16] studied the concept of stronger from of $(1, 2)^*$ -quotient mapping in bitopological spaces and also introduced the concepts of $(1, 2)^*$ -semi-open and $(1, 2)^*$ - α -open sets. In 2010, Arockiarani [2] introduced $(1, 2)^*$ - $\pi g \alpha$ -closed sets in bitopological spaces and studied some basic properties of $(1, 2)^*$ - $\pi g\alpha$ -closed sets. In 2010, K, Kavathri et al. [6] introduced and studied a new class of sets called regular (1, 2)*-g-closed sets and used it to obtain a new class of functions called (1, 2)*-rg-continuous and almost (1, 2)*-rg-closed functions in bitopological spaces and also obtained characterizations and preservation theorems for mildly $(1, 2)^*$ -normal spaces. In 2011, Arockiarani [3] introduced $(1, 2)^*-\alpha$ -normal spaces in bitopological spaces and studied some basic properties. In 2018, H. Kumar [8] introduced and studied some weaker forms of quasi normal spaces in topological spaces and obtained their characterizations. In 2022, H. Kumar [9] introduced the concept of $(1, 2)^*-\eta$ -open sets and $(1, 2)^*-\eta$ -neighbourhood and; studied their properties. H. Kumar [10] introduced the concept of (1, 2)*-generalized η-closed sets and studied some basic properties of $(1, 2)^*$ -gn-closed sets. H. Kumar [11] introduced and studied some new functions called almost $(1, 2)^*$ -n-continuous, alm 2)*-g η -continuous, almost (1, 2)*-rg η -continuous, (1, 2)*- η -closed, (1, 2)*-g η -closed, (1, 2)*-rg η -closed, almost (1, 2)*- η -closed, and almost (1, 2)*-rgn-closed functions in bitopological spaces and obtained some characterizations and preservation theorems for mildly $(1, 2)^*$ - η -normal spaces. Recently, H. Kumar [12] introduced and studied $(1, 2)^*$ - π g η -closed sets in bitopological spaces and obtained their properties.

2. PRELIMINARIES

Throughout the paper (X, $\mathfrak{I}_1, \mathfrak{I}_2$), (Y, σ_1, σ_2) and (Z, \wp_1, \wp_2) (or simply X, Y and Z) denote bitopological spaces.

Definition 2.1. Let S be a subset of X. Then S is said to be $\mathfrak{T}_{1,2}$ -open [16] if $S = A \cup B$ where $A \in \mathfrak{T}_1$ and $B \in \mathfrak{T}_2$. The complement of a $\mathfrak{I}_{1,2}$ -open set is $\mathfrak{I}_{1,2}$ -closed.

Definition 2.2 [16]. Let S be a subset of X. Then

(i) the $\mathfrak{T}_{1,2}$ -closure of S, denoted by $\mathfrak{T}_{1,2}$ -cl(S), is defined as $\cap \{F : S \subset F \text{ and } F \text{ is } \mathfrak{T}_{1,2}$ -closed}; (ii) the $\mathfrak{T}_{1,2}$ -interior of S, denoted by $\mathfrak{I}_{1,2}$ -int(S), is defined as $\cup \{F : F \subset S \text{ and } F \text{ is } \mathfrak{I}_{1,2}$ -open $\}$.

Note 2.3 [16]. Notice that $\mathfrak{T}_{1,2}$ -open sets need not necessarily form a topology.

SJIF Impact Factor 2022: 8.197 | ISI I.F. Value: 1.241 | Journal DOI: 10.36713/epra2016 ISSN: 24

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 8 | Issue: 1 | January 2023

- Peer Reviewed Journal

Definition 2.4. A subset A of a bitopological space (X, $\mathfrak{I}_1, \mathfrak{I}_2$) is called (i) regular (1, 2)*-open [16] if $A = \mathfrak{I}_{1,2}$ -int($\mathfrak{I}_{1,2}$ -cl((A)). (ii) (1, 2)*- π -open [2] if A is the finite union of (1, 2)*-regular-open sets. (iii) (1, 2)*- η -open [9] if $A \subset \mathfrak{I}_{1,2}$ -int($\mathfrak{I}_{1,2}$ -cl($\mathfrak{I}_{1,2}$ -int(A)). $\cup \mathfrak{I}_{1,2}$ -cl($\mathfrak{I}_{1,2}$ -int(A)).

The complement of a regular $(1, 2)^*$ -open (resp. $(1, 2)^*$ - π -open, $(1, 2)^*$ - η -open) set is called **regular** $(1, 2)^*$ -**closed** (resp. $(1, 2)^*$ - π -closed, $(1, 2)^*$ - η -closed).

The $(1, 2)^*-\eta$ -closure of a subset A of X is denoted by $(1, 2)^*-\eta$ -cl(A), defined as the intersection of all $(1, 2)^*-\eta$ -closed sets containing A. The $(1, 2)^*-\eta$ -interior of S, denoted by $(1, 2)^*-\eta$ -int(S), is defined as $\cup \{F : F \subset S \text{ and } F \text{ is } (1, 2)^*-\eta$ -open $\}$.

The family of all regular $(1, 2)^*$ -open (resp. regular $(1, 2)^*$ -closed, $(1, 2)^*$ - η -open, $(1, 2)^*$ - η -closed) sets in X is denoted by $(1, 2)^*$ -RO(X) (resp. $(1, 2)^*$ -RC(X), $(1, 2)^*$ - η -O(X), $(1, 2)^*$ - η -C(X)).

Remark 2.5. We have the following implications for the properties of subsets [12]:

regular $(1, 2)^*$ -open $\Rightarrow (1, 2)^*$ - π -open $\Rightarrow \mathfrak{I}_{1, 2}$ -open $\Rightarrow (1, 2)^*$ - η -open

Where none of the implications is reversible.

Definition 2.6. A subset A of a bitopological space $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is called

(i) (1, 2)^{*}-generalized η -closed (briefly (1, 2)^{*}-g η -closed) [10] if (1, 2)^{*}- η -cl(A) \subset U whenever A \subset U and U is $\mathfrak{I}_{1,2}$ -open in X. (ii) (1, 2)^{*}- π generalized η -closed (briefly (1, 2)^{*}- π g η -closed [12]) if (1, 2)^{*}- η -cl(A) \subset U whenever A \subset U and U is (1, 2)^{*}- π -open in X.

The complement of a $(1, 2)^*$ -gη-closed (resp. $(1, 2)^*$ - π gη-closed) set is called $(1, 2)^*$ -gη-open (resp. $(1, 2)^*$ - π gη-open).

We denote the set of all $(1, 2)^*$ - $\pi g\eta$ -closed (resp. $(1, 2)^*$ - $\pi g\eta$ -open) sets in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ by $(1, 2)^*$ - $\pi g\eta$ - $\mathbf{C}(\mathbf{X})$ (resp. $\pi g\eta$ - $\mathbf{O}(\mathbf{X})$). **Theorem 2.7. [12].** A set A is $(1, 2)^*$ - $\pi g\eta$ -open if and only if the following condition holds: $F \subset (1, 2)^*$ - η -int(A) whenever F is $(1, 2)^*$ - π -closed and $F \subset A$.

3. (1, 2)*-QUASI η -NORMAL SPACES IN BITOPOLOGICAL SPACES

In this section, we introduce $(1, 2)^*$ -quasi η -normal spaces in bitopological spaces and study some basic properties of $(1, 2)^*$ -quasi η -normal spaces.

Definition 3.1. A space X is said to be $(1, 2)^*$ - η -normal [11] (resp. $(1, 2)^*$ -normal, $(1, 2)^*$ - α -normal [3]) if for every pair of disjoint $\mathfrak{T}_{1,2}$ -closed sets H and K, there exist disjoint $(1, 2)^*$ - η -open (resp. $\mathfrak{T}_{1,2}$ -open, $(1, 2)^*$ - α -open) sets U, V of X such that H \subset U and K \subset V.

Definition 3.2. A space X is said to be $(1, 2)^*$ -quasi η -normal (resp. $(1, 2)^*$ -quasi normal, $(1, 2)^*$ -quasi α -normal [2]) if for every pair of disjoint $(1, 2)^*$ - π -closed H, K of X, there exist disjoint $(1, 2)^*$ - η -open (resp. $\mathfrak{T}_{1,2}$ -open, $(1, 2)^*$ - α -open) sets U, V of X such that $H \subset U$ and $K \subset V$

Definition 3.3. A space X is said to be mildly $(1, 2)^*$ - η -normal [11] (resp. mildly $(1, 2)^*$ -normal [6] mildly $(1, 2)^*$ - α -normal) if for every pair of disjoint H, K $\in (1, 2)^*$ -RC(X), there exist disjoint $(1, 2)^*$ - η -open (resp. $\mathfrak{T}_{1,2}$ -open, $(1, 2)^*$ - α -open) sets U, V of X such that H \subset U and K \subset V.

SJIF Impact Factor 2022: 8.197 | ISI I.F. Value: 1.241 | Journal DOI: 10.36713/epra2016 ISSN:

EPRA International Journal of Research and Development (IJRD)

Volume: 8 | Issue: 1 | January 2023

- Peer Reviewed Journal

Remark 3.4. From the definitions stated above, we obtain the following diagram.

$(1, 2)^*$ -normal	\Rightarrow	$(1, 2)^*$ -quasi normal	\Rightarrow	mildly $(1, 2)^*$ -normal
\Downarrow		\Downarrow		\downarrow
$(1, 2)^*$ - α -normal	\Rightarrow	$(1, 2)^*$ -quasi α -normal	\Rightarrow	mildly $(1, 2)^*$ - α -normal
\downarrow		\Downarrow		\downarrow
$(1, 2)^*$ - η -normal	\Rightarrow	(1, 2) [*] -quasi η-normal	\Rightarrow	mildly $(1, 2)^*$ -η-normal

Where none of the implications is reversible as can be seen from the following example:

Example 3.5. Let $X = \{a, b, c, d\}$ with $\mathfrak{I}_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$ and $\mathfrak{I}_2 = \{\phi, X, \{c\}, \{a, c, d\}\}$. Then the pair of disjoint regular $(1, 2)^*$ -closed sets $H = \{a\}$ and $K = \{c, d\}$, there exist disjoint $(1, 2)^*$ - η -open sets $U = \{a\}$ and $V = \{c, d\}$ such that $H \subset U$ and $K \subset V$. Hence $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is mildly $(1, 2)^*$ - η -normal but not mildly $(1, 2)^*$ -normal, since $V = \{c, d\}$ is not $\mathfrak{I}_{1,2}$ -open set.

Example 3.6. Let $X = \{a, b, c\}$ with $\mathfrak{I}_1 = \{\phi, X, \{a\}, \{a, c\}\}$ and $\mathfrak{I}_2 = \{\phi, X, \{c\}\}$. Then the pair of disjoint $(1, 2)^* - \pi$ -closed sets H = ϕ and K = $\{b\}$, there exist disjoint $(1, 2)^* - \eta$ -open sets U = $\{a\}$ and V = $\{b, c\}$ such that H \subset U and K \subset V. Hence $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is $(1, 2)^* - \eta$ -open set $(1, 2)^* - \eta$ -open nor $(1, 2)^* - \eta$ -open nor $(1, 2)^* - \eta$ -open set.

Example 3.7. Let $X = \{a, b, c\}$ with $\mathfrak{I}_1 = \{\phi, X, \{a\}\}$ and $\mathfrak{I}_2 = \{\phi, X, \{b\}, \{a, b\}\}$. Then the pair of disjoint $(1, 2)^*$ - π -closed sets $H = \phi$ and $K = \{c\}$, there exist disjoint $(1, 2)^*$ - η -open sets $U = \{b\}$ and $V = \{a, c\}$ such that $H \subset U$ and $K \subset V$. Hence $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is $(1, 2)^*$ -quasi η -normal but it is neither $(1, 2)^*$ -quasi normal nor $(1, 2)^*$ -quasi α -normal, since $V = \{b, c\}$ is neither $\mathfrak{I}_{1,2}$ -open nor $(1, 2)^*$ - α -open set.

Theorem 3.8. For a space X, the following are equivalent:

(a) X is $(1, 2)^*$ -quasi η -normal.

(b) For every pair of $(1, 2)^*$ - π -open subsets U and V of X whose union is X, there exist $(1, 2)^*$ - η -closed subsets G and H of X such that $G \subset U, H \subset V$ and $G \cup H = X$.

(c) For any $(1, 2)^*$ - π -closed set A and every π -open set B in X such that $A \subset B$, there exists a $(1, 2)^*$ - η -open subset U of X such that $A \subset U \subset (1, 2)^*$ - η -cl(U) $\subset B$.

(d) For every pair of disjoint $(1, 2)^*$ - π -closed subsets A and B of X, there exist $(1, 2)^*$ - η -open subsets U and V of X such that A \subset U, B \subset V and $(1, 2)^*$ - η -cl(U) \cap $(1, 2)^*$ - η -cl(V) = ϕ .

Proof. (a) \Rightarrow (b), (b) \Rightarrow (c), (c) \Rightarrow (d) and (d) \Rightarrow (a).

(a) \Rightarrow (b). Let U and V be any $(1, 2)^*$ - π -open subsets of a $(1, 2)^*$ -quasi η -normal space X such that $U \cup V = X$. Then, X - U and X - V are disjoint $(1, 2)^*$ - π -closed subsets of X. By $(1, 2)^*$ -quasi η -normality of X, there exist disjoint $(1, 2)^*$ - η -open subsets U_1 and V_1 of X such that $X - U \subset U_1$ and $X - V \subset V_1$. Let $G = X - U_1$ and $H = X - V_1$. Then, G and H are $(1, 2)^*$ - η -closed subsets of X such that $G \subset U$, $H \subset V$ and $G \cup H = X$.

(b) \Rightarrow (c). Let A be a $(1, 2)^*$ - π -closed and B is a $(1, 2)^*$ - π -open subsets of X such that $A \subset B$. Then, X - A and B are $(1, 2)^*$ - π -open subsets of X such that $(X - A) \cup B = X$. Then, by part (b), there exist $(1, 2)^*$ - η -closed sets G and H of X such that $G \subset (X - A)$, $H \subset B$ and $G \cup H = X$. Then, $A \subset (X - G)$, $(X - B) \subset (X - H)$ and $(X - G) \cap (X - H) = \phi$. Let U = X - G and V = (X - H). Then U and V are disjoint $(1, 2)^*$ - η -open sets such that $A \subset U \subset X - V \subset B$. Since X - V is $(1, 2)^*$ - η -closed, then we have $(1, 2)^*$ - η -cl(U) $\subset (X - V)$. Thus, $A \subset U \subset (1, 2)^*$ - η -cl(U) $\subset B$.

(c) \Rightarrow (d). Let A and B be any disjoint $(1, 2)^*$ - π -closed subset of X. Then A \subset X – B, where X – B is π -open. By the part (c), there exists a $(1, 2)^*$ - η -open subset U of X such that A \subset U \subset $(1, 2)^*$ - η -cl(U) \subset X – B. Let V = X – $(1, 2)^*$ - η -cl(U). Then, V is a $(1, 2)^*$ - η -open subset of X. Thus, we obtain A \subset U, B \subset V and $(1, 2)^*$ - η -cl(U) \cap $(1, 2)^*$ - η -cl(V) = ϕ .

(d) \Rightarrow (a). It is obvious.

SJIF Impact Factor 2022: 8.197 | ISI I.F. Value: 1.241 | Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 8 | Issue: 1 | January 2023

- Peer Reviewed Journal

The following result is useful for giving some other characterization of $(1, 2)^*$ -quasi η -normal spaces.

Theorem 3.9. For a space X, the following are equivalent:

(a) X is $(1, 2)^*$ -quasi η -normal.

(b) For any disjoint $(1, 2)^*$ - π -closed sets H and K, there exist disjoint $(1, 2)^*$ - $g\eta$ -open sets U and V such that $H \subset U$ and $K \subset V$

(c) For any disjoint $(1, 2)^*$ - π -closed sets H and K, there exist disjoint $(1, 2)^*$ - π g\eta-open sets U and V such that H \subset U and K \subset V.

(d) For any $(1, 2)^*$ - π -closed set H and any $(1, 2)^*$ - π -open set V containing H, there exists a $(1, 2)^*$ - $g\eta$ -open set U of X such that H $\subset U \subset (1, 2)^*$ - η -cl(U) $\subset V$.

(e) For any $(1, 2)^*$ - π -closed set H and any $(1, 2)^*$ - π -open set V containing H, there exists a $(1, 2)^*$ - π g\eta-open set U of X such that H $\subset U \subset (1, 2)^*$ - η -cl(U) $\subset V$.

Proof. (a) \Rightarrow (b), (b) \Rightarrow (c), (c) \Rightarrow (d), (d) \Rightarrow (e) and (e) \Rightarrow (a).

(a) \Rightarrow (b). Let X be (1, 2)^{*}-quasi η -normal space. Let H, K be disjoint (1, 2)^{*}- π -closed sets of X. By assumption, there exist disjoint (1, 2)^{*}- η -open sets U, V such that H \subset U and K \subset V. Since every (1, 2)^{*}- η -open set is (1, 2)^{*}- η -open, so U and V are (1, 2)^{*}- η -open sets such that H \subset U and K \subset V.

(b) \Rightarrow (c). Let H, K be two disjoint (1, 2)^{*}- π -closed sets. By assumption, there exist disjoint (1, 2)^{*}- η -open sets U and V such that $H \subset U$ and $K \subset V$. Since (1, 2)^{*}- η -open set is (1, 2)^{*}- π g\eta-open, so U and V are (1, 2)^{*}- π g\eta-open sets such that $H \subset U$ and $K \subset V$.

(c) \Rightarrow (d). Let H be any (1, 2)*- π -closed set and V be any (1, 2)*- π -open set containing H. By assumption, there exist disjoint (1, 2)*- π g\eta-open sets U and W such that H \subset U and X – V \subset W. By **Theorem 2.7**, we get X – V \subset (1, 2)*- η -int(W) and (1, 2)*- η -cl(U) \cap (1, 2)*- η -int(W) = ϕ . Hence H \subset U \subset (1, 2)*- η -cl(U) \subset X – (1, 2)*- η -int(W) \subset V.

(d) \Rightarrow (e). Let H be any (1, 2)^{*}- π -closed set and V be any (1, 2)^{*}- π -open set containing H. By assumption, there exist (1, 2)^{*}- $g\eta$ -open set U of X such that $H \subset U \subset (1, 2)^*-\eta$ -cl(U) $\subset V$. Since, every (1, 2)^{*}- $g\eta$ -open set is (1, 2)^{*}- $\pi g\eta$ -open, there exists (1, 2)^{*}- $\pi g\eta$ -open sets U of X such that $H \subset U \subset (1, 2)^*-\eta$ -cl(U) $\subset V$.

(e) \Rightarrow (a). Let H, K be any two disjoint $(1, 2)^*$ - π -closed sets of X. Then H \subset X – K and X – K is π -open. By assumption, there exists $(1, 2)^*$ - π g\eta-open set G of X such that H \subset G \subset $(1, 2)^*$ - η -cl(G) \subset X – K. Put U = $(1, 2)^*$ - η -int(G), V = X – $(1, 2)^*$ - η -cl(G). Then U and V are disjoint $(1, 2)^*$ - η -open sets of X such that H \subset U and K \subset V.

4. PRESERVATION THEOREMS

In this section, we shall recall the definitions of some functions used in the sequel. Further we introduce some $(1, 2)^* - \pi g\eta$ -closed and almost $(1, 2)^* - \pi g\eta$ -closed functions in bitopological spaces.

Definition 4.1. A function $f: X \rightarrow Y$ is said to be

(i) (1, 2)*- η -continuous [11] if $f^{-1}(F)$ is (1, 2)*- η -closed in X for every $\mathfrak{T}_{1,2}$ -closed set F of Y; (ii) (1, 2)*- π g η -continuous [12] if $f^{-1}(F)$ is (1, 2)*- π g η -closed in X for every $\mathfrak{T}_{1,2}$ -closed set F of Y; (iii) (1, 2)*- π -continuous [2] if $f^{-1}(F)$ is (1, 2)*- π -closed in X for every $\mathfrak{T}_{1,2}$ -closed set F of Y;

Definition 4.2. A function $f: X \to Y$ is said to be

(i) almost $(1, 2)^*$ -continuous [6] if $f^{-1}(F)$ is $\mathfrak{I}_{1,2}$ -open in X for every $F \in (1, 2)^*$ -RO(Y); (ii) almost $(1, 2)^*$ - π -continuous [2] if $f^{-1}(F)$ is $(1, 2)^*$ - π -closed in X for every $F \in (1, 2)^*$ -RC(Y); (iii) almost $(1, 2)^*$ - π g η -continuous [12] if $f^{-1}(F)$ is $(1, 2)^*$ - π g η -closed in X for every $F \in (1, 2)^*$ -RC(Y);

Definition 4.3. A function $f: X \rightarrow Y$ is said to be

(i) regular (1, 2)*-closed [6] if f(F) is regular (1, 2)*-closed in Y for every $\mathfrak{T}_{1,2}$ -closed set F of X; (ii) (1, 2)*- η -closed [11] if f(F) is (1, 2)*- η -closed in Y for every $\mathfrak{T}_{1,2}$ -closed set F of X; (iii) (1, 2)*- η -closed [11] if f(F) is (1, 2)*- η -closed in Y for every $\mathfrak{T}_{1,2}$ -closed set F of X; (iv) (1, 2)*- η -closed if f(F) is (1, 2)*- η -closed in Y for every $\mathfrak{T}_{1,2}$ -closed set F of X;

Definition 4.4. A function $f: X \rightarrow Y$ is said to be

(i) (1, 2)*-rc-preserving [6] if f(F) is regular (1, 2)*-closed in Y for every $F \in (1, 2)^*$ -RC(X); (ii) almost (1, 2)*-closed [11] if f(F) is $\psi_{1,2}$ -closed in Y for every $F \in (1, 2)^*$ -RC(X);

SJIF Impact Factor 2022: 8.197 | ISI I.F. Value: 1.241 | Journal DOI: 10.36713/epra2016

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (JIRD)

Volume: 8 | Issue: 1 | January 2023

- Peer Reviewed Journal

(iii) almost $(1, 2)^*$ - η -closed [11] if f(F) is $(1, 2)^*$ - η -closed in Y for every $F \in (1, 2)^*$ -RC(X); (iv) almost $(1, 2)^*$ -gn-closed [11] if f(F) is $(1, 2)^*$ -gn-closed in Y for every $F \in (1, 2)^*$ -RC(X); (v) almost $(1, 2)^*$ - $\pi g\eta$ -closed if f(F) is $(1, 2)^*$ - $\pi g\eta$ -closed in Y for every $F \in (1, 2)^*$ -RC(X);

Remark 4.5. From the definitions stated above, we obtain the following diagram.

regular $(1, 2)^*$ -closed	\Rightarrow	$(1, 2)^*$ -rc-preserving
\Downarrow		\Downarrow
$(1, 2)^*$ -closed	\Rightarrow	almost $(1, 2)^*$ -closed
\Downarrow		\Downarrow
$(1, 2)^*$ - η -closed	\Rightarrow	almost $(1, 2)^*$ - η -closed
\Downarrow		\Downarrow
$(1, 2)^*$ -gη-closed	\Rightarrow	almost $(1, 2)^*$ -g η -closed
\Downarrow		\Downarrow
$(1, 2)^*$ - $\pi g\eta$ -closed	\Rightarrow	almost $(1, 2)^*$ - $\pi g\eta$ -closed

The following examples enable us to realize that none of the implications in the above diagram is reversible.

Example 4.6. Let $X = Y = \{a, b, c\}, \Im_1 = \{\phi, X, \{a\}\}, \Im_2 = \{\phi, X, \{b\}\}, \psi_1 = \{\phi, Y, \{a, b\}\}$ and $\psi_2 = \{\phi, Y, \{a\}\}$. Define $f: X \to \{a, b, c\}$. Y as f(a) = b; f(b) = a; f(c) = c. Clearly f is $(1, 2)^*$ -gn-closed as well as almost $(1, 2)^*$ -gn-closed. It is also almost $(1, 2)^*$ - π gnclosed. But it is neither $(1, 2)^*$ -closed nor almost $(1, 2)^*$ -closed. It is neither $(1, 2)^*$ - η -closed nor almost $(1, 2)^*$ - η -closed.

Example 4.7. Let $X = Y = \{a, b, c\}, \Im_1 = \{\phi, X, \{a\}\}, \Im_2 = \{\phi, X, \{b\}\}, \psi_1 = \{\phi, Y, \{a, b\}\}$ and $\psi_2 = \{\phi, Y, \{a\}\}$. Define $f: X \to \{a, b\}$ Y as f(a) = b, f(b) = c, f(c) = a. But it is neither $(1, 2)^*$ - η -closed nor almost $(1, 2)^*$ - η -closed. It is neither $(1, 2)^*$ - η -closed nor almost $(1, 2)^*$ -gη-closed.

Example 4.8. Let $X = Y = \{a, b, c\}, \Im_1 = \{\phi, X, \{a\}\}, \Im_2 = \{\phi, X, \{a, c\}\}, \psi_1 = \{\phi, Y, \{a, b\}\}$ and $\psi_2 = \{\phi, Y, \{a\}\}$. Define f : X \rightarrow Y as f(a) = b; f(b) = a; f(c) = c. Clearly f is almost (1, 2)^{*}-closed as well as almost (1, 2)^{*}-g\eta-closed, but it is not (1, 2)^{*}-closed. It is also almost $(1, 2)^*$ - $\pi g\eta$ -closed

Example 4.9. Let $X = Y = \{a, b, c\}, \Im_1 = \{\phi, X, \{a\}\}, \Im_2 = \{\phi, X, \{b\}\}, \psi_1 = \{\phi, Y, \{b\}, \{c\}, \{b, c\}\}$ and $\psi_2 = \{\phi, Y, \{a, b\}\}$. Define $f: X \to Y$ as f(a) = c, f(b) = b, f(c) = a. Clearly f is $(1, 2)^*$ -closed as well as almost $(1, 2)^*$ -closed. It is $(1, 2)^*$ - η -closed as well as almost $(1, 2)^*$ -gn-closed. But it is neither regular $(1, 2)^*$ -closed nor $(1, 2)^*$ -rc-preserving.

Example 4.10. Let $X = Y = \{a, b, c\}$, $\Im_1 = \{\phi, X, \{a\}\}$, $\Im_2 = \{\phi, X, \{b\}\}$, $\psi_1 = \{\phi, Y, \{a\}, \{a, c\}\}$ and $\psi_2 = \{\phi, Y, \{c\}\}$. Define f: $X \rightarrow Y$ as f(a) = a; f(b) = c; f(c) = b. Clearly f is $(1, 2)^*$ -rc-preserving as well as almost $(1, 2)^*$ -rc-losed.

Theorem 4.11. If $f: X \to Y$ is an almost $(1, 2)^* - \pi$ -continuous and $(1, 2)^* - \pi g\eta$ -closed function, then f(A) is $(1, 2)^* - \pi g\eta$ -closed in Y for every $(1, 2)^*$ - π g\eta-closed set A of X.

Proof. Let A be any $(1, 2)^*$ - π g\eta-closed set of X and V be any $(1, 2)^*$ - π -open set of Y containing f(A). Since f is almost $(1, 2)^*$ - π -2)^{*}- η -cl(f((1, 2)^{*}- η -cl(A))) \subset V. Hence f(A) is (1, 2)^{*}- π g η -closed in Y.

Theorem 4.12. A surjection $f: X \to Y$ is almost $(1, 2)^* - \pi g\eta$ -closed if and only if for each subset S of Y and each $U \in (1, 2)^*$ -RO(X) containing $f^{-1}(S)$, there exists a $(1, 2)^*$ - π g\eta-open set V of Y such that $S \subset V$ and $f^{-1}(V) \subset U$. **Proof.** Necessity. Suppose that f is almost $(1, 2)^*$ - π g\eta-closed. Let S be a subset of Y and U $\in (1, 2)^*$ -RO(X) containing f⁻¹(S). If V = Y - f(X - U), then V is a $(1, 2)^* - \pi g\eta$ -open set of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Sufficiency. Let F be any regular $(1, 2)^*$ -closed set of X. Then $f^{-1}(Y - f(F)) \subset (X - F)$ and $(X - F) \in (1, 2)^*$ -RO(X). There exists a $(1, 2)^*$ - $\pi g\eta$ -open set V of Y such that $Y - f(F) \subset V$ and $f^{-1}(V) \subset (X - F)$. Therefore, we have $f(F) \supset (Y - V)$ and $F \subset X - f^ ^{1}(V) \subset f^{-1}(Y - V)$. Hence we obtain f(F) = Y - V and f(F) is $(1, 2)^{*} - \pi g\eta$ -closed in Y, which shows that f is almost $(1, 2)^{*} - \pi g\eta$ closed.

SJIF Impact Factor 2022: 8.197 | ISI I.F. Value: 1.241 | Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

- Peer Reviewed Journal

Volume: 8 | Issue: 1 | January 2023

Theorem 4.13. If $f: X \to Y$ is an almost $(1, 2)^* - \pi g \eta$ -continuous, $(1, 2)^* - rc$ -preserving injection and Y is $(1, 2)^*$ -quasi η -normal then X is $(1, 2)^*$ -quasi η -normal.

Proof. Let A and B be any disjoint $(1, 2)^*$ - π -closed sets of X. Since f is a $(1, 2)^*$ -rc-preserving injection, f(A) and f(B) are disjoint $(1, 2)^*$ - π -closed sets of Y. Since Y is $(1, 2)^*$ -quasi η -normal, there exist disjoint $(1, 2)^*$ - η -open sets U and V of Y such that f(A) \subset U and f(B) \subset V.

Now if $G = (1, 2)^* - int((1, 2)^* - cl(U))$ and $H = (1, 2)^* - int((1, 2)^* - cl(V))$. Then G and H are regular $(1, 2)^* - open$ sets such that $f(A) \subset G$ and $f(B) \subset H$. Since f is almost $(1, 2)^* - \pi g\eta$ -continuous, $f^{-1}(G)$ and $f^{-1}(H)$ are disjoint $(1, 2)^* - \pi g\eta$ -open sets containing A and B which shows that X is $(1, 2)^* - quasi \eta$ -normal.

Theorem 4.14. If $f: X \to Y$ is $(1, 2)^* - \pi$ -continuous, almost $(1, 2)^* - \eta$ -closed surjection and X is $(1, 2)^* - \eta$ -normal space then Y is $(1, 2)^* - \eta$ -normal.

Proof. Let A and B be any two disjoint closed sets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint $(1, 2)^*$ - π -closed sets of X. Since X is quasi $(1, 2)^*$ - η -normal, there exist disjoint $(1, 2)^*$ - η -open sets U and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$.

Let $G = (1, 2)^* - int((1, 2)^* - cl(U))$ and $H = (1, 2)^* - int((1, 2)^* - cl(V))$. Then G and H are disjoint regular $(1, 2)^* - open$ sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. Now, we set K = Y - f(X - G) and L = Y - f(X - H). Then K and L are $(1, 2)^* - \eta$ -open sets of Y such that $A \subset K$, $B \subset L$, $f^{-1}(K) \subset G$ and $f^{-1}(L) \subset H$. Since G and H are disjoint, K and L are disjoint. Since K and L are $(1, 2)^* - \eta$ -open and we obtain $A \subset (1, 2)^* - \eta$ -int(K), $B \subset (1, 2)^* - \eta$ -int(L) and $(1, 2)^* - \eta$ -int(K) $\cap (1, 2)^* - \eta$ -int(L) = ϕ . Therefore, Y is $(1, 2)^* - \eta$ -normal.

Theorem 4.15. Let $f: X \to Y$ be an almost $(1, 2)^* - \pi$ -continuous and almost $(1, 2)^* - \pi g\eta$ -closed surjection. If X is $(1, 2)^*$ -quasi η -normal space then Y is $(1, 2)^*$ -quasi η -normal.

Proof. Let A and B be any disjoint $(1, 2)^*$ - π -closed sets of Y. Since f is almost $(1, 2)^*$ - π -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint $(1, 2)^*$ - π -closed sets of X. Since X is $(1, 2)^*$ -quasi η -normal, there exist disjoint $(1, 2)^*$ - η -open sets U and V of X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$.

Put $G = (1, 2)^* - int((1, 2)^* - cl(U))$ and $H = (1, 2)^* - int((1, 2)^* - cl(V))$. Then G and H are disjoint regular $(1, 2)^* - open$ sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. By **Theorem 4.12**, there exist $(1, 2)^* - g\eta$ -open sets K and L of Y such that $A \subset K$, $B \subset L$, $f^{-1}(K) \subset G$ and $f^{-1}(L) \subset H$. Since G and H are disjoint, so are K and L by **Theorem 2.7**, $A \subset (1, 2)^* - \eta$ -int(K), $B \subset (1, 2)^* - \eta$ -int(L) and $(1, 2)^* - \eta$ -int(K) $\cap (1, 2)^* - \eta$ -int(L) = ϕ . Therefore, Y is $(1, 2)^* - \eta$ -normal.

Corollary 4.16. If $f: X \to Y$ is an almost $(1, 2)^*$ -continuous and almost $(1, 2)^*$ -closed surjection and X is a $(1, 2)^*$ -normal space, then Y is $(1, 2)^*$ -quasi η -normal.

Proof. Since every almost $(1, 2)^*$ -closed function is almost $(1, 2)^*$ - π g\eta-closed by **Theorem 4.15**, Y is $(1, 2)^*$ -quasi η -normal.

5. CONCLUSION

In this paper, we introduce a new class of normal space called, $(1, 2)^*$ -quasi η -normal space. The relationships among $(1, 2)^*$ -normal, $(1, 2)^*$ -quasi η -normal, $(1, 2)^*$ -quasi η -normal, $(1, 2)^*$ - η -normal, $(1, 2)^*$ - η -normal, $(1, 2)^*$ - η -normal spaces are investigated. Moreover, we introduce some functions such as $(1, 2)^*$ - η -closed, $(1, 2)^*$ - η -closed almost $(1, 2)^*$ - η -closed. Utilizing $(1, 2)^*$ - η -closed sets and some functions, we obtain some characterizations and preservation theorems for $(1, 2)^*$ -quasi η -normal spaces. This idea can be extended to ordered topological, ordered bitopological and fuzzy topological spaces etc.

Acknowledgements. I am heartily thankful to Dr M. C. Sharma, Department of Mathematics, N. R. E. C. College, Khurja, Uttar Pradesh (India) for his encouragement and support during the preparation of this paper.

REFERENCES

- 1. J. Antony Rex Rodrigo, O. Ravi, A. Pandi and C. M. Santhana, On (1, 2)*-s-normal spaces and pre-(1, 2)*-gs-closed functions, Int. J. Algorithms Computing and Math., Vol. 4, No. 1, (2011), 29-42.
- Arockiarani and K. Mohana, (1, 2)*-πgα-closed sets and (1, 2)*-quasi-α-normal spaces in bitopological spaces settings, Antartica J. Math., 7(3), (2010), 345-355.
- 3. Arockiarani and K. Mohana, (1, 2)*-πgα-closed maps in bitopological spaces, Int. J. Math. Analysis, Vol. 5, No. 29, (2011), 1419-1428.
- 4. J. Dontchev and T. Noiri, Quasi normal spaces and π g-closed sets, Acta Math Hungar. 89(3)(2000), 211-219.

SJIF Impact Factor 2022: 8.197 | ISI I.F. Value: 1.241 | Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 8 | Issue: 1 | January 2023

- Peer Reviewed Journal
- 5. C. Janaki and M. Anandhi, On (1, 2)*-πgθ-closed sets in bitopological spaces, Int. J. of Computational Engineering Research, Vol. 04, Issue 8, (2014), 6-12.
- 6. K. Kayathri, O. Ravi, M. L. Thivagar and M. Joseph Israel, Mildly (1, 2)^{*}-normal spaces and some bitopological functions, No 1, 135(2010), 1-13.
- 7. J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
- 8. H. Kumar, Some weaker forms of normal spaces in topological spaces, Ph. D. Thesis, C. C. S. university, Meerut, (2018)
- 9. H. Kumar, On (1, 2)^{*}-η-open sets in bitopological spaces, Jour. of Emerging Tech. and Innov. Res., Vol. 9, Issue 8, (2022), c194-c198.
- H. Kumar, (1, 2)^{*}-generalized η-closed sets in bitopological spaces, EPRA Int. Jour. of Multidisciplinary Research (IJMR)., Vol. 8, Issue 9, (2022), 319-326.
- H. Kumar, Mildly (1, 2)^{*}-η-normal spaces and some (1, 2)^{*}-η-functions in bitopological spaces, Quest Journals, Journal of Research in Applied Mathematics, Vol. 8, Issue 10, (2022), 70-78.
- H. Kumar, (1, 2)^{*}-πgη-closed sets in bitopological spaces, EPRA Int. Jour. of Multidisciplinary Research (IJMR), Vol. 8, Issue 12, (2022), 66-75.
- 13. S. Lal and M. S. Rahman, A note on quasi-normal spaces, Indian J. Math., 32(1990), 87-94.
- 14. M. Lellis Thivagar and Nirmala Mariappan, A note on (1, 2)*-strongly generalized semi-preclosed sets, Proceedings of the International Conference on Mathematics and Computer Science, (2010), 422-425.
- 15. Pious Missier, O. Ravi, T. Salai Parkunan and A. Pandi, On bitopological (1, 2)^{*}-generalized homeomorphism, Int. J. of Contemp. Math. Sci., 5(11), (2010), 543-557.
- 16. O. Ravi, M. L. Thivagar, On stronger forms of (1, 2)*-quotient mappings in bitopological spaces. Internat. J. Math. Game Theory and Algebra 14(2004), 481-492.
- 17. O. Ravi, M. L. Thivagar and Jin Jinli, Remarks on extensions of (1, 2)*-g-closed mappings in bitopological spaces, Archimedes J. Math. 1(2), (2011), 177-187.
- 18. O. Ravi, M. Lellis Thivagar and M. Joseph Isreal, A bitopological approach on πg -closed sets and continuity, Int. Mathematical Forum (To appear).
- 19. D. Sreeja and P. Juane Sinthya, Malaya J. Mat. S(1)(2015), 27-41.

Department of Mathematics, Veerangana Avantibai Govt Degree College, Atrauli-Aligarh, U. P. (India) Email Address: hamantmaths@gmail.com