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ABSTRACT 

In this paper, we introduce a new class of normal space called, (1, 2)*-quasi -normal space. The relationships among (1, 2)*-

normal, (1, 2)*-quasi -normal, mildly (1, 2)*-normal, (1, 2)*-quasi -normal, (1, 2)*-mildly -normal, (1, 2)*--normal and 

mildly (1, 2)*--normal spaces are investigated. Moreover, we introduce some closed functions such as (1, 2)∗-g-closed and 

almost (1, 2)∗-g-closed. Utilizing (1, 2)∗-g-closed sets and some functions, we obtain some characterizations and preservation 

theorems for (1, 2)*-quasi -normal spaces. 
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2020 AMS Subject Classification: 54A05, 54A10, 54E55  

 
 

1. INTRODUCTION 
The study of bitopological space was first initiated by Kelly [7] in 1963. By using the topological notions, namely, semi-open, -

open and pre-open sets, many new bitopological sets are defined and studied by many topologists. In 1990, Lal and Rahman [13] 

studied quasi normal spaces in topological spaces and obtained their properties. In 2000, Dontchev and Noiri [4] further studied 

quasi normal spaces in topological spaces and obtained their characterizations. In 2004, Ravi and Thivagar [16] studied the 

concept of stronger from of (1, 2)∗-quotient mapping in bitopological spaces and also introduced the concepts of (1, 2)∗-semi-open 

and (1, 2)∗--open sets.  In 2010,  Arockiarani [2] introduced (1, 2)∗-g-closed sets in bitopological spaces and studied some 

basic properties of (1, 2)∗-g-closed sets. In 2010, K. Kayathri et al. [6] introduced and studied a new class of sets called regular 

(1, 2)∗-g-closed sets and used it to obtain a new class of functions called (1, 2)∗-rg-continuous  and almost (1, 2)∗-rg-closed 

functions in bitopological spaces and also obtained characterizations and preservation theorems for mildly (1, 2)
*
-normal spaces. 

In 2011, Arockiarani [3] introduced (1, 2)∗--normal spaces in bitopological spaces and studied some basic properties. In 2018, H. 

Kumar [8] introduced and studied some weaker forms of quasi normal spaces in topological spaces and obtained their 

characterizations. In 2022, H. Kumar [9] introduced the concept of (1, 2)∗--open sets and (1, 2)∗--neighbourhood and; studied 

their properties.  H. Kumar [10] introduced the concept of (1, 2)∗-generalized -closed sets and studied some basic properties of 

(1, 2)∗-g-closed sets. H. Kumar [11] introduced and studied some new functions called almost (1, 2)∗--continuous, almost (1, 

2)∗-g-continuous, almost (1, 2)∗-rg-continuous, (1, 2)∗--closed, (1, 2)∗-g-closed, (1, 2)∗-rg-closed, almost (1, 2)∗--closed,  

and almost (1, 2)∗-rg-closed functions in bitopological spaces and obtained some characterizations and preservation theorems for 

mildly (1, 2)∗--normal spaces. Recently, H. Kumar [12] introduced and studied (1, 2)∗-g-closed sets in bitopological spaces 

and obtained their properties. 

 

2. PRELIMINARIES 

Throughout the paper (X, 1, 2), (Y, σ1, σ2) and (Z, 1, 2) (or simply X, Y and Z) denote bitopological spaces. 

 

Definition 2.1. Let S be a subset of X. Then S is said to be 1,2-open [16] if S = A  B where A  1 and B  2. The 

complement of a 1,2-open set is 1,2-closed.   

 

Definition 2.2 [16]. Let S be a subset of X. Then  

(i) the 1,2-closure of S, denoted by 1,2-cl(S), is defined as  {F : S   F and F is 1, 2-closed}; (ii) the 1,2-interior of S, 

denoted by 1,2-int(S), is defined as  {F : F  S and F is 1,2-open}.  

 

Note 2.3 [16]. Notice that 1,2-open sets need not necessarily form a topology. 
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Definition 2.4. A subset A of a bitopological space (X, 1, 2) is called  

(i) regular (1, 2 )
*-open  [16] if A =  1,2-int(1,2-cl((A)). 

(ii) (1, 2)
*
--open [2] if A is the finite union of (1, 2)

*-regular-open sets. 

(iii) (1, 2)∗--open [9] if A   1,2 -int(1,2 -cl(1,2 -int)(A))   1,2 -cl(1,2 –int(A)).  

 

The complement of a regular (1, 2)
*-open (resp. (1, 2)

*
--open, (1, 2)∗--open) set is called regular (1 , 2)

*-closed (resp. (1, 2)
*
-

-closed,  (1, 2)∗--closed). 
 
The (1, 2)∗--closure of a subset A of X is denoted by (1, 2)∗--cl(A), defined as the intersection of all (1, 2)∗--closed sets 
containing A. The (1, 2)∗--interior of S, denoted by (1, 2)∗--int(S), is defined as  {F : F  S and F is (1, 2)∗--open}. 
 

The family of all regular (1, 2)
*-open (resp. regular (1, 2)

*-closed, (1, 2)∗--open, (1, 2)∗--closed) sets in X is denoted by (1, 2)
*
-

RO(X) (resp. (1, 2)
*
-RC(X),  (1, 2)∗--O(X), (1, 2)∗--C(X)).  

 

Remark 2.5. We have the following implications for the properties of subsets [12]: 

 

regular (1, 2)
*-open       (1, 2)

*
--open     1, 2-open        (1, 2)

*
--open 

               

Where none of the implications is reversible. 

 

Definition 2.6. A subset A of a bitopological space (X, 1, 2) is called 

(i) (1, 2)
*
-generalized -closed (briefly (1, 2)

*
-g-closed) [10] if (1, 2)

*
--cl(A)  U whenever A  U and U is 1,2-open in X. 

(ii) (1, 2)
*
-  generalized -closed (briefly (1, 2)

*
-g-closed [12]) if (1, 2)

*
--cl(A)  U whenever A  U and U is (1, 2)

*
--

open in X. 

 

The complement of a (1, 2)
*
-g-closed (resp. (1, 2)

*
-g-closed) set is called (1, 2)

*
-g-open (resp. (1, 2)

*
-g-open). 

 
We denote the set of all (1, 2)

*
-g-closed (resp. (1, 2)

*
-g-open) sets in (X, 1, 2) by (1, 2)

*
-g-C(X) (resp. g-O(X)). 

Theorem 2.7. [12]. A set A is (1, 2)
*
-g-open if and only if the following condition holds:  

                F  (1, 2)
*
--int(A) whenever F is (1, 2)∗--closed and F  A. 

 

3. (1, 2)∗-QUASI -NORMAL SPACES IN BITOPOLOGICAL SPACES 

In this section, we introduce (1, 2)
*
-quasi -normal spaces in bitopological spaces and study some basic properties of (1, 2)

*
-quasi 

-normal spaces.  

 

Definition 3.1. A space X is said to be (1, 2)
*
--normal [11] (resp. (1, 2)

*
-normal, (1, 2)

*
--normal [3]) if for every pair of 

disjoint 1,2-closed sets H and K, there exist disjoint (1, 2)
*
--open (resp. 1,2-open, (1, 2)

*
--open) sets U, V of X such that H  

U and K  V. 

 

Definition 3.2. A space X is said to be (1, 2)
*
-quasi -normal (resp. (1, 2)

*
-quasi normal, (1, 2)

*
-quasi -normal [2]) if for 

every pair of disjoint (1, 2)
*
--closed H, K of X, there exist disjoint (1, 2)

*
--open (resp. 1,2-open, (1, 2)

*
--open) sets U, V of X 

such that H  U and K  V  

 

Definition 3.3. A space X is said to be mildly (1, 2)
*
--normal [11] (resp. mildly (1, 2)

*
-normal [6] mildly (1, 2)

*
--normal) if 

for every pair of disjoint H, K  (1, 2)∗-RC(X), there exist disjoint (1, 2)
*
--open (resp. 1,2-open, (1, 2)

*
--open) sets U, V of X 

such that H  U and K  V. 
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Remark 3.4. From the definitions stated above, we obtain the following diagram.  

 

(1, 2)
*
-normal                      (1, 2)

*
-quasi normal                 mildly (1, 2)

*
-normal 

 

                                                                                                             
 

(1, 2)
*
--normal                (1, 2)

*
-quasi -normal              mildly (1, 2)

*
--normal  

   

                                                                                                             
 

(1, 2)
*
--normal                (1, 2)

*
-quasi -normal              mildly (1, 2)

*
--normal    

 

 

Where none of the implications is reversible as can be seen from the following example:   

Example 3.5. Let X = {a, b, c, d} with 1 = {, X, {a}, {b}, {a, b}, {b, c, d}} and 2 = {, X, {c}, {a, c, d}}. Then the pair of 

disjoint regular (1, 2)
*
-closed sets H = {a} and K = {c, d}, there exist disjoint (1, 2)

*
--open sets U = {a} and V = {c, d} such that 

H  U and K  V. Hence (X, 1, 2) is mildly (1, 2)
*
--normal but not mildly (1, 2)

*
-normal, since V = {c, d} is not 1,2-open 

set. 

 

Example 3.6. Let X = {a, b, c} with 1 = {, X, {a}, {a, c}} and 2 = {, X, {c}}. Then the pair of disjoint (1, 2)
*
--closed sets H 

=  and K = {b}, there exist disjoint (1, 2)
*
--open sets U = {a} and V = {b, c} such that H  U and K  V. Hence (X, 1, 2) is 

(1, 2)
*
-quasi -normal but it is neither (1, 2)

*
-quasi normal nor (1, 2)

*
-quasi -normal, since V = {b, c} is neither 1,2-open nor (1, 

2)
*
--open set. 

 

Example 3.7. Let X = {a, b, c} with 1 = {, X, {a}} and 2 = {, X, {b}, {a, b}}. Then the pair of disjoint (1, 2)
*
--closed sets 

H =  and K = {c}, there exist disjoint (1, 2)
*
--open sets U = {b} and V = {a, c} such that H  U and K  V. Hence (X, 1, 2) 

is (1, 2)
*
-quasi -normal but it is neither (1, 2)

*
-quasi normal nor (1, 2)

*
-quasi -normal, since V = {b, c} is neither 1,2-open nor 

(1, 2)
*
--open set. 

                              

Theorem 3.8. For a space X, the following are equivalent: 

(a) X is (1, 2)
*
-quasi -normal. 

(b) For every pair of (1, 2)
*
--open subsets U and V of X whose union is X, there exist (1, 2)

*
--closed subsets G and H of X such 

that G U, H V and G  H = X.  

(c) For any (1, 2)
*
--closed set A and every -open set B in X such that A  B, there exists a (1, 2)

*
--open subset U of X such 

that A U  (1, 2)
*
--cl(U)  B. 

(d) For every pair of disjoint (1, 2)
*
--closed subsets A and B of X, there exist (1, 2)

*
--open subsets U and V of X such that A 

U, B V and (1, 2)
*
--cl(U) (1, 2)

*
--cl(V) = . 

Proof. (a) (b), (b) (c), (c) (d) and (d) (a). 

 

(a) (b). Let U and V be any (1, 2)
*
--open subsets of a (1, 2)

*
-quasi -normal space X such that U  V = X. Then, X – U and X 

– V are disjoint (1, 2)
*
--closed subsets of X. By (1, 2)

*
-quasi -normality of X, there exist disjoint (1, 2)

*
--open subsets U1 and 

V1 of X such that X – U  U1 and X – V  V1. Let G = X – U1 and H = X – V1.  Then, G and H are (1, 2)
*
--closed subsets of X 

such that G U, H V and G H = X. 

 

(b) (c). Let A be a (1, 2)
*
--closed and B is a (1, 2)

*
--open subsets of X such that A B. Then, X – A and B are (1, 2)

*
--

open subsets of X such that (X – A)  B = X. Then, by part (b), there exist (1, 2)
*
--closed sets G and H of X such that G  (X – 

A), H B and G  H = X. Then, A  (X – G), (X – B) X – H) and (X – G)  (X – H) = . Let U = X – G and V = (X – H). 

Then U and V are disjoint (1, 2)
*
--open sets such that A  U X – V  B. Since X – V is (1, 2)

*
--closed, then we have (1, 2)

*
-

-cl(U)  (X – V). Thus, A  U (1, 2)
*
--cl(U)  B. 

 

(c) (d). Let A and B be any disjoint (1, 2)
*
--closed subset of X. Then A X – B, where X – B is -open. By the part (c), there 

exists a (1, 2)
*
--open subset U of X such that A  U  (1, 2)

*
--cl(U)  X – B. Let V = X – (1, 2)

*
--cl(U). Then, V is a (1, 2)

*
-

-open subset of X. Thus, we obtain A U, B V and (1, 2)
*
--cl(U)  (1, 2)

*
--cl(V) = .   

 

(d) (a). It is obvious. 
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The following result is useful for giving some other characterization of (1, 2)
*
-quasi -normal spaces. 

 

Theorem 3.9. For a space X, the following are equivalent: 

(a) X is (1, 2)
*
-quasi -normal. 

(b) For any disjoint (1, 2)
*
--closed sets H and K, there exist disjoint (1, 2)

*
-g-open sets U and V such that H U and K V  

(c) For any disjoint (1, 2)
*
--closed sets H and K, there exist disjoint (1, 2)

*
-g-open sets U and V such that H  U and K V. 

(d) For any (1, 2)
*
--closed set H and any (1, 2)

*
--open set V containing H, there exists a (1, 2)

*
-g-open set U of X such that H 

U  (1, 2)
*
--cl(U)  V. 

(e) For any (1, 2)
*
--closed set H and any (1, 2)

*
--open set V containing H, there exists a (1, 2)

*
-g-open set U of X such that H 

 U  (1, 2)
*
--cl(U)  V. 

Proof.  (a)  (b), (b)  (c), (c)  (d), (d)  (e) and (e)  (a). 

(a)  (b). Let X be (1, 2)
*
-quasi -normal space. Let H, K be disjoint (1, 2)

*
--closed sets of X. By assumption, there exist 

disjoint (1, 2)
*
--open sets U, V such that H  U and K  V. Since every (1, 2)

*
--open set is (1, 2)

*
-g-open, so U and V are (1, 

2)
*
-g-open sets such that H  U and K  V. 

 

(b)  (c). Let H, K be two disjoint (1, 2)
*
--closed sets. By assumption, there exist disjoint (1, 2)

*
-g-open sets U and V such that 

H  U and K  V. Since (1, 2)
*
-g-open set is (1, 2)

*
-g-open, so U and V are (1, 2)

*
-g-open sets such that H  U and K  

V. 

 

(c)  (d). Let H be any (1, 2)
*
--closed set and V be any (1, 2)

*
--open set containing H. By assumption, there exist disjoint (1, 

2)
*
-g-open sets U and W such that H  U and X – V  W. By Theorem 2.7, we get X – V  (1, 2)

*
--int(W) and (1, 2)

*
--

cl(U)  (1, 2)
*
--int (W) = . Hence H  U  (1, 2)

*
--cl(U)  X – (1, 2)

*
--int(W)  V. 

 

(d)  (e). Let H be any (1, 2)
*
--closed set and V be any (1, 2)

*
--open set containing H. By assumption, there exist (1, 2)

*
-g-

open set U of X such that H  U  (1, 2)
*
--cl(U)  V. Since, every (1, 2)

*
-g-open set is (1, 2)

*
-g-open, there exists (1, 2)

*
-

g-open sets U of X such that H  U  (1, 2)
*
--cl(U)  V. 

 

(e)  (a). Let H, K be any two disjoint (1, 2)
*
--closed sets of X. Then H  X – K and X – K is -open. By assumption, there 

exists (1, 2)
*
-g-open set G of X such that H  G  (1, 2)

*
--cl(G)  X – K. Put U = (1, 2)

*
--int(G), V = X – (1, 2)

*
--cl(G). 

Then U and V are disjoint (1, 2)
*
--open sets of X such that H  U and K  V. 

 

4. PRESERVATION THEOREMS 

In this section, we shall recall the definitions of some functions used in the sequel. Further we introduce some (1, 2)
*
-g-closed 

and almost (1, 2)
*
-g-closed functions in bitopological spaces. 

  

Definition 4.1. A function f : X → Y is said to be  

(i) (1, 2)∗--continuous  [11] if f 
−1

(F) is (1, 2)
*
--closed in X for every 1,2-closed set F of Y; 

(ii) (1, 2)∗-g-continuous [12] if f 
−1

(F) is (1, 2)
*
-g-closed in X for every 1,2-closed set F of Y;  

(iii) (1, 2)∗--continuous  [2] if f 
−1

(F) is (1, 2)
*
--closed in X for every 1,2-closed set F of Y; 

 

Definition 4.2. A function f : X → Y is said to be  

(i) almost (1, 2)
*
-continuous [6] if f 

−1
(F) is 1,2-open in X for every F  (1, 2)

*
-RO(Y);  

(ii) almost (1, 2)
*
--continuous [2] if f 

−1
(F) is (1, 2)

*
--closed in X for every F  (1, 2)

*
-RC(Y);  

(iii) almost (1, 2)
*
-g-continuous [12] if f 

−1
(F) is (1, 2)

*
-g-closed in X for every F  (1, 2)∗-RC(Y);  

 

Definition 4.3. A function f : X → Y is said to be  

(i) regular (1, 2)
*
-closed [6] if f(F) is regular (1, 2)

*
-closed in Y for every 1,2-closed set F of X; 

(ii) (1, 2)
*
--closed [11] if f(F) is (1, 2)

*
--closed in Y for every 1,2-closed set F of X;  

(iii) (1, 2)
*
-g-closed [11] if f(F) is (1, 2)

*
-g-closed in Y for every 1,2-closed set F of X;  

(iv) (1, 2)
*
-g-closed if f(F) is (1, 2)

*
-g-closed in Y for every 1,2-closed set F of X. 

  

Definition 4.4. A function f : X → Y is said to be  

(i) (1, 2)
*
-rc-preserving [6] if f(F) is regular (1, 2)∗-closed in Y for every F  (1, 2)

*
-RC(X);  

(ii) almost (1, 2)
*
-closed [11] if f(F) is 1,2-closed in Y for every F  (1, 2)

*
-RC(X);  
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(iii) almost (1, 2)
*
- -closed [11] if f(F) is (1, 2)

*
--closed in Y for every F  (1, 2)

*
-RC(X);  

(iv) almost (1, 2)
*
-g-closed [11] if f(F) is (1, 2)

*
-g-closed in Y for every F  (1, 2)

*
-RC(X); 

(v) almost (1, 2)
*
-g-closed if f(F) is (1, 2)

*
-g-closed in Y for every F  (1, 2)

*
-RC(X); 

 

Remark 4.5. From the definitions stated above, we obtain the following diagram.  

 

regular (1, 2)
*
-closed                               (1, 2)

*
-rc-preserving 

                                                                                   

       (1, 2)
*
-closed                                    almost (1, 2)

*
-closed  

                                                                                   

     (1, 2)
*
--closed                                almost (1, 2)

*
--closed 

                                                                                   

    (1, 2)
*
-g-closed                              almost (1, 2)

*
-g-closed   

                                                                                   

   (1, 2)
*
-g-closed                             almost (1, 2)

*
-g-closed 

 

The following examples enable us to realize that none of the implications in the above diagram is reversible.   

 

Example 4.6. Let X = Y = {a, b, c}, 1 = {, X, {a}}, 2 = {, X, {b}}, 1 = {, Y, {a, b}} and 2 = {, Y, {a}}. Define f : X → 

Y as f(a) = b; f(b) = a; f(c) = c. Clearly f is (1, 2)
*
-g-closed as well as almost (1, 2)

*
-g-closed. It is also almost (1, 2)

*
-g-

closed. But it is neither (1, 2)
*
-closed nor almost (1, 2)

*
-closed. It is neither (1, 2)

*
--closed nor almost (1, 2)

*
--closed.  

 

Example 4.7. Let X = Y = {a, b, c}, 1 = {, X, {a}}, 2 = {, X, {b}}, 1 = {, Y, {a, b}} and 2 = {, Y, {a}}. Define f : X → 

Y as f(a) = b, f(b) = c, f(c) = a. But it is neither (1, 2)
*
--closed nor almost (1, 2)

*
--closed. It is neither (1, 2)

*
-g-closed nor 

almost (1, 2)
*
-g-closed. 

 

Example 4.8. Let X = Y = {a, b, c}, 1 = {, X, {a}}, 2 = {, X, {a, c}}, 1 = {, Y, {a, b}} and 2 = {, Y, {a}}. Define f : X 

→ Y as f(a) = b; f(b) = a; f(c) = c. Clearly f is almost (1, 2)
*
-closed as well as almost (1, 2)

*
-g-closed, but it is not (1, 2)

*
-closed. 

It is also almost (1, 2)
*
-g-closed 

 

Example 4.9. Let X = Y = {a, b, c}, 1 = {, X, {a}}, 2 = {, X, {b}}, 1 = {, Y, {b}, {c}, {b, c}} and 2 = {, Y, {a, b}}. 

Define f : X → Y as f(a) = c, f(b) = b, f(c) = a. Clearly f is (1, 2)
*
-closed as well as almost (1, 2)

*
-closed. It is (1, 2)

*
--closed as 

well as almost (1, 2)
*
-g-closed. But it is neither regular (1, 2)

*
-closed nor (1, 2)

*
-rc-preserving.  

 

Example 4.10. Let X = Y = {a, b, c}, 1 = {, X, {a}}, 2 = {, X, {b}}, 1 = {, Y, {a}, {a, c}} and 2 = {, Y, {c}}. Define f : 

X → Y as f(a) = a; f(b) = c; f(c) = b. Clearly f is (1, 2)∗-rc-preserving as well as almost (1, 2)
*
--closed.  

 

Theorem 4.11. If f : X Y is an almost (1, 2)
*
--continuous and (1, 2)

*
-g-closed function, then f(A) is (1, 2)

*
-g-closed  in 

Y for every (1, 2)
*
-g-closed set A of X. 

Proof. Let A be any (1, 2)
*
-g-closed set of X and V be any (1, 2)

*
--open set of Y containing f(A). Since f is almost (1, 2)

*
--

continuous, f 
–1

(V) is (1, 2)
*
--open in X and A f 

–1
(V). Therefore, we have (1, 2)

*
--cl(A)  f 

–1
(V) and hence f((1, 2)

*
--

cl(A))  V. Since f is (1, 2)
*
-g-closed, f((1, 2)

*
--cl(A)) is (1, 2)

*
-g-closed in Y and hence we obtain (1, 2)

*
--cl(f(A))  (1, 

2)
*
--cl(f((1, 2)

*
--cl(A)))V. Hence f(A) is (1, 2)

*
-g-closed in Y.  

 

Theorem 4.12. A surjection f : X Y is almost (1, 2)
*
-g-closed if and only if for each subset S of Y and each U (1, 2)

*
-

RO(X) containing f 
–1

(S), there exists a  (1, 2)
*
-g-open set V of Y such that S  V and f 

–1
(V) U. 

Proof. Necessity. Suppose that f is almost (1, 2)
*
-g-closed. Let S be a subset of Y and U  (1, 2)

*
-RO(X) containing f 

–1
(S). If 

V = Y  f (X  U), then V is a  (1, 2)
*
-g-open set of Y such that S V and f 

–1
(V) U. 

 

Sufficiency. Let F be any regular (1, 2)
*
-closed set of X. Then f 

–1
(Y  f(F))  (X  F) and (X  F) (1, 2)

*
-RO(X). There exists 

a (1, 2)
*
-g-open set V of Y such that Y  f(F) V and f 

–1
(V)  (X  F). Therefore, we have f(F)  (Y  V) and F  X – f 

–

1
(V)  f 

−1 
(Y  V) . Hence we obtain f(F) = Y  V and f(F) is (1, 2)

*
-g-closed in Y, which shows that f is almost (1, 2)

*
-g-

closed.  
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Theorem 4.13. If f : X  Y is an almost (1, 2)
*
-g-continuous, (1, 2)

*
-rc-preserving injection and Y is (1, 2)

*
-quasi -normal 

then X is (1, 2)
*
-quasi -normal. 

Proof. Let A and B be any disjoint (1, 2)
*
--closed sets of X. Since f is a (1, 2)

*
-rc-preserving injection, f(A) and f(B) are  disjoint 

(1, 2)
*
--closed sets of Y. Since Y is (1, 2)

*
-quasi -normal, there exist disjoint (1, 2)

*
--open sets U and V of Y such that f(A)  

U and f(B)   V. 

 

Now if G = (1, 2)
*
-int((1, 2)

*
-cl(U)) and H = (1, 2)

*
-int((1, 2)

*
-cl(V)). Then G and H are regular (1, 2)

*
-open sets such that f(A)  

G and f(B)  H. Since f is almost (1, 2)
*
-g-continuous, f 

–1
(G) and f 

–1
(H) are disjoint (1, 2)

*
-g-open sets containing A and B 

which shows that X is (1, 2)
*
-quasi -normal. 

 

Theorem 4.14. If f : X Y is (1, 2)
*
--continuous, almost (1, 2)

*
--closed surjection and X is (1, 2)

*
-quasi -normal space  then 

Y is (1, 2)
*
--normal. 

Proof. Let A and B be any two disjoint closed sets of Y. Then f 
–1

(A) and f 
–1

(B) are disjoint (1, 2)
*
--closed sets of X. Since X is 

quasi (1, 2)
*
--normal, there exist disjoint (1, 2)

*
--open sets U and V such that f 

–1
(A)  U and f 

–1
(B) V.  

 

Let G = (1, 2)
*
-int((1, 2)

*
-cl(U)) and H = (1, 2)

*
-int((1, 2)

*
-cl(V)). Then G and H are disjoint regular (1, 2)

*
-open sets of X such 

that f 
–1

(A) G and f 
–1

(B)  H. Now, we set K = Y  f(X  G) and L = Y  f (X  H). Then K and L are (1, 2)
*
--open sets of Y 

such that A  K, B  L, f 
–1

(K)  G and f 
–1

(L)  H. Since G and H are disjoint, K and L are disjoint. Since K and L are (1, 2)
*
--

open and we obtain A  (1, 2)
*
--int(K), B  (1, 2)

*
--int(L) and (1, 2)

*
--int(K)  (1, 2)

*
--int(L) = . Therefore, Y is(1, 2)

*
-

-normal.  

 

Theorem 4.15. Let f : X  Y be an almost (1, 2)
*
--continuous and almost (1, 2)

*
-g-closed surjection. If X is (1, 2)

*
-quasi -

normal space then Y is (1, 2)
*
-quasi -normal.  

Proof. Let A and B be any disjoint (1, 2)
*
--closed sets of Y. Since f is almost (1, 2)

*
--continuous, f 

–1
(A) and f 

–1
(B) are disjoint 

(1, 2)
*
--closed sets of X. Since X is (1, 2)

*
-quasi -normal, there exist disjoint (1, 2)

*
--open sets U and V of X such that f 

–1
(A) 

 U and f 
–1

(B)  V.  

 

Put G = (1, 2)
*
-int((1, 2)

*
-cl(U)) and H = (1, 2)

*
-int((1, 2)

*
-cl(V)). Then G and H are disjoint regular (1, 2)

*
-open sets of X such 

that f 
–1

(A) G and f 
–1

(B)  H. By Theorem 4.12, there exist (1, 2)
*
-g-open sets K and L of Y such that A  K, B  L, f 

–1
(K) 

 G and f 
–1

(L)  H. Since G and H are disjoint, so are K and L by Theorem 2.7, A  (1, 2)
*
--int(K), B  (1, 2)

*
--int(L) and 

(1, 2)
*
--int(K)    (1, 2)

*
--int(L) =  . Therefore, Y is (1, 2)

*
-quasi -normal. 

 

Corollary 4.16. If f : X  Y is an almost (1, 2)
*
-continuous and almost (1, 2)

*
-closed surjection and X is a (1, 2)

*
-normal space, 

then Y is (1, 2)
*
-quasi -normal. 

Proof. Since every almost (1, 2)
*
-closed function is almost (1, 2)

*
-g-closed by Theorem 4.15, Y is (1, 2)

*
-quasi -normal.  

 

5. CONCLUSION 

In this paper, we introduce a new class of normal space called, (1, 2)
*
-quasi -normal space. The relationships among (1, 2)

*
-

normal, (1, 2)
*
-quasi -normal, mildly (1, 2)

*
-normal, (1, 2)

*
-quasi -normal, (1, 2)

*
-mildly -normal, (1, 2)

*
--normal and 

mildly (1, 2)
*
--normal spaces are investigated. Moreover, we introduce some functions such as (1, 2)∗--closed, (1, 2)∗-g-

closed, (1, 2)∗-g-closed, almost (1, 2)∗--closed, almost (1, 2)∗-g-closed and almost (1, 2)∗-g-closed. Utilizing (1, 2)∗-g-

closed sets and some functions, we obtain some characterizations and preservation theorems for (1, 2)
*
-quasi -normal spaces. 

This idea can be extended to ordered topological, ordered bitopological and fuzzy topological spaces etc. 
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