

HIGH LEVEL COMPARISON - A METHOD OF DETERMINING THE CLASS OF THE DECISION

Abdurakhmanov Bobomurod Gulombek ugli

ABSTRACT

This article covers complex modules

$$f(x) \equiv 0 \left(mod \ p_1^{\alpha_1} \ p_2^{\alpha_2} \dots p_k^{\alpha_k} \right)$$

comparisons are output to the comparison system, and the solutions of each comparison of the system are determined using the product.

KEYWORDS. Comparison, system of comparisons, product, remainder.

We have a complex module, $f(x) \equiv 0 \pmod{p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}}$ (1)give a comparison. Here are p_1, p_2, \dots, p_k different prime numbers, $(P_i, P_j) = 1$ $i \neq j$, $i = \overline{1, k}$, $j = \overline{1, k}$.

(1) Comparisons should be required to define a class of solutions. Usually given

(1) is equivalent to the following system of comparison:

$$\begin{cases} f(x) \equiv 0 \pmod{P_1^{\alpha_1}} \\ f(x) \equiv 0 \pmod{P_2^{\alpha_2}} \\ \dots \\ f(x) \equiv 0 \pmod{P_k^{\alpha_k}} \end{cases}$$
(2)

(2) the relationship is reasonable that is, comparison of property come turns out to be .[1], [2]

Seconds on the other hand, in general, when a high degree of comparison dice universal formula, solving is not. Therefore, the possibility of boric General without $f(x) \equiv 0 (modP^{\alpha})$ (3) solving the training class let's find out. This method is originally $f(x) \equiv 0 (modP)$ (4).

Here $_f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$ (5)

If n > p in (5), this comparison level (p-1) can be reduced. $f(x) = (x^p - x)Q(x) + R(x)$ (6)

Given the spot $R(x) \equiv 0 \pmod{P^{\alpha}}$ (5)'in (6), the comparison in (5) can be written as follows: $(x^{p} - x) \neq p$

(5) neither initially module P on the classroom solutions let's learn .

Assumption Let (5) — has a solution and should _ get:

 $x \equiv x_1(modP) \quad \rightarrow x = x_1 + Pt_1 \quad (7)$

(7) c (5) ha put her _ decision
$$P^2$$
 module on let's find our

 $f(x_1) + Pf'(x_1)t \equiv 0 (modP^2) \qquad f(x_1) \vdots PConsidering$ $\frac{f(x_1)}{P} + f'(x_1)t_1 \equiv 0 (modP) \qquad (8)$

(8) to the decision has _ If $(f'(x_1), P) = 1$ so. $x = x_1 + Pt_1$ with the value of R (x) Taylor in a row distribute P^2 ha caralla hadlar leave will be sent.

The last condition from the solution (8) to the solution has as well as this solution class as follows to obtain :

$$t_1 \equiv t'_1(modP) \rightarrow x = x_1 + P(t'_1 + P^2t_2) = x_2 + P^2t_2$$
$$x_2 = x_1 + Pt'_1 \qquad (9)$$

(9) neither (5) ha put the comparison P^3 module on the solutions class we learn and the yield that was ifodada P^3 can be written as follows: $f(x_2) + f'(x_2)P^2t_2 \equiv 0 \pmod{P^3}$

 $\frac{f(x_2)}{P^2} + f'(x_2)t_2 \equiv 0 \pmod{P}$ it's here too $(f'(x_2), P) = 1$ given that the final solution for the comparison above can be written as follows $t_2 \equiv t'_2 + Pt_3$ (10) (10) neither (9) ha let's put $x = x_2 + P^2(t'_2 + Pt_3) = x_2 + P^2t'_2 + P^3t_3$ Repeating this

process $(\alpha - 2)$, the class of general solutions can be written as follows: $x = x_{\alpha} + P^{\alpha}t_{\alpha}$

The above listed method is the following condition reasonable that again while carra emphasizing let's go $(f'(x_k, P^k) = 1, k = \overline{1, \alpha})$

The article $f(x) \equiv 0 \pmod{p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}}$ apparently high level comparison to solve the training class comparison to the citation system $f(x) \equiv 0 \pmod{p_i^{\alpha_i}}$ $i = \overline{1, k}$ then discusses the considerations for solving the decision class of each system of comparisons using the product, and the corresponding

 $f(x) \equiv 7x^3 + 19x + 25 \equiv 0 \pmod{27}$ comparison decision class $x \equiv 13 \pmod{27}; \quad x = 13 + 27t_3$ found. For example $f(x) \equiv 0 \pmod{3^3}$ (11) $f(x) = 7x^3 + 19x + 25$

😰 2022 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | www.eprajournals.com |378 |

 $\begin{aligned} f(x) &\equiv 7x^3 + 19x + 25 \equiv x^3 + x + 1 \equiv 0 \pmod{3}, (x^3 - x) + 2x + 1 \equiv 0 \pmod{3} \\ (x^3 - x) &\vdots 3 \to 2x \equiv -1 \pmod{3}, \ 2x \equiv 2 \pmod{3}, \ x \equiv 1 \pmod{3}, \ x = 1 + 3t_1 \end{aligned} (12) \\ (12) \text{ to } (11) \text{ release } _ 3^2\text{Ha divisible limits leave send} \\ f'(x_1) &= (28x^3 + 19)x \equiv 47, \ f(1) = 51, f(1) + f'(1)3t_1 \equiv 0 \pmod{3^2}, \\ 51 + 3 \cdot 47t_1 \equiv 0 \pmod{3^2}, 17 + 47t_1 \equiv 0 \pmod{3}, \ -2 + 2t_1 \equiv 0 \pmod{3}, \\ t_1 \equiv 1 \pmod{3}, t_1 = 1 + 3t_2 \end{aligned} (13) \\ (13) \text{ to } (12) \text{ let's put} x = 1 + 3(1 + 3t_2) = 4 + 3^2t_2 \end{aligned} (14) \qquad x_2 = 4 \\ f(4) &= 7 \cdot 4^3 + 19 \cdot 4 + 25 = 7 \cdot 64 + 76 + 25 = 549 \\ f'(x) &= 21x^2 + 19, f'(4) = 21 \cdot 4 + 19 = 84 + 19 = 103, 549 + 103 \cdot 3^2t_2 \equiv 0 \pmod{27} \\ &= 61 + 103t_2 \equiv 0 \pmod{3}, \ 1 + t_2 \equiv 0 \pmod{3}, t_2 \equiv 2 + 3t_3 \end{aligned} (15) \end{aligned}$

USED LITERATURE

- 1. Vinogradov I. M. "Fundamentals of the theory of the bit" Nauka Moscow, 1974.
- 2. Soliev A., Isroilov M. "Sonlar theory" T.: 1993.
- 3. Nazarov R.N., Toshpulatov B.T. "Algebra and number theory" T.: 1993.
- 4. Sh.A. Ayupov, B.A. Omirov "Algebra and number theory" T.: 2019.
- 5. J. Khodjiev, A.S. Fineleib "Algebra and number theory courses" T.: 2001.